Centre for Discrete and Applicable Mathematics |
|
CDAM Research Report, LSE-CDAM-2000-18December 2000 |
Airat Bekmetjev, Graham Brightwell, Andrzej Czygrinow, and Glenn Hurlbert
Abstract
In this paper we prove two multiset analogs of classical results. We prove a multiset analog of Lovász's version of the Kruskal-Katona Theorem and an analog of the Bollobás-Thomason threshold result. As a corollary we obtain the existence of pebbling thresholds for arbitrary graph sequences. In addition, we improve both the lower and upper bounds for the `random pebbling' threshold of the sequence of paths.
A PDF file (185 kB) with the full contents of this report can be downloaded by clicking here.
Alternatively, if you would like to get a free hard copy of this report, please send the number of this report, LSE-CDAM-2000-18, together with your name and postal address to:
CDAM Research Reports Series Centre for Discrete and Applicable Mathematics London School of Economics Houghton Street London WC2A 2AE, U.K. |
||
Phone: +44(0)-20-7955 7732. Fax: +44(0)-20-7955 6877. Email: info@maths.lse.ac.uk |
Introduction to the CDAM Research Report Series. | ||
CDAM Homepage. |
Last changed: Wed 9 Feb 2005
For comments go to:
http://www.maths.lse.ac.uk/webmaster.html