Centre for Discrete and Applicable Mathematics

 CDAM Research Report, LSE-CDAM-2002-07

May 2002


Uniform Glivenko-Cantelli Theorems and Concentration of Measure in the Mathematical Modelling of Learning

Martin Anthony

Abstract

This paper surveys certain developments in the use of probabilistic techniques for the modelling of generalization in machine learning. Building on `uniform convergence' results in probability theory, a number of approaches to the problem of quantifying generalization have been developed in recent years. Initially these models addressed binary classification, and as such were applicable, for example, to binary-output neural networks. More recently, analysis has been extended to apply to regression problems, and to classification problems in which the classification is achieved by using real-valued functions (in which the concept of a large margin has proven useful). In order to obtain more useful and realistic bounds, and to analyse model selection, another development has been the derivation of data-dependent bounds. Here, we discuss some of the main probabilistic techniques and key results, particularly the use (and derivation of) uniform Glivenko-Cantelli theorems, and the use of concentration of measure results. Many details are omitted, the aim being to give a high-level overview of the types of approaches taken and methods used.


A PDF file (148 kB) with the full contents of this report can be downloaded by clicking here.

Alternatively, if you would like to get a free hard copy of this report, please send the number of this report, LSE-CDAM-2002-07, together with your name and postal address to:
CDAM Research Reports Series
Centre for Discrete and Applicable Mathematics
London School of Economics
Houghton Street
London WC2A 2AE, U.K.
Phone: +44(0)-20-7955 7732.
Fax: +44(0)-20-7955 6877.
Email: info@maths.lse.ac.uk


Introduction to the CDAM Research Report Series.
CDAM Homepage.


Copyright © London School of Economics & Political Science 2005

Last changed: Wed 9 Feb 2005
For comments go to: http://www.maths.lse.ac.uk/webmaster.html