Centre for Discrete and Applicable Mathematics

 CDAM Research Report, LSE-CDAM-2007-03

January 2007 (Revised June 2007)


Very Slowly Varying Functions -- II

N. H. Bingham and A. J. Ostaszewski

This paper is a sequel to both Ash, Erdös and Rubel AER, on very slowly varying functions, and BOst1, on foundations of regular variation. We show that generalizations of the Ash-Erdös-Rubel approach -- imposing growth restrictions on the function h, rather than regularity conditions such as measurability or the Baire property -- lead naturally to the main result of regular variation, the Uniform Convergence Theorem.
Keywords: Slow variation, Uniform Convergence Theorem, Heiberg-Lipschitz condition, Heiberg-Seneta theorem.

A PDF file (146 kB) with the full contents of this report can be downloaded by clicking here.

Alternatively, if you would like to get a free hard copy of this report, please send the number of this report, LSE-CDAM-2007-03, together with your name and postal address to:
CDAM Research Reports Series
Centre for Discrete and Applicable Mathematics
London School of Economics
Houghton Street
London WC2A 2AE, U.K.
Phone: +44(0)-20-7955 7494.
Fax: +44(0)-20-7955 6877.
Email: info@maths.lse.ac.uk 


Introduction to the CDAM Research Report Series.
CDAM Homepage.


Copyright © London School of Economics & Political Science 2007