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Abstract

Probability measures on the space of proper colorings of a Cayley tree (that is, an in�nite
regular connected graph with no cycles) are of interest not only in combinatorics but also in
statistical physics, as states of the antiferromagnetic Potts model at zero temperature, on the
\Bethe lattice".

We concentrate on a particularly nice class of such measures which remain invariant under
parity-preserving automorphisms of the tree. Making use of a correspondence with branching
random walks on certain bipartite graphs, we determine when more than one such measure
exists. The case of \uniform" measures is particularly interesting, and as it turns out, plays a
special role.

Some of the results herein are deducible from previous work of the authors and by members
of the statistical physics community, but many are new. We hope that this work will serve as a
helpful glimpse into the rapidly expanding intersection of combinatorics and statistical physics.

1 Introduction

1.1 Uniform Proper Colorings

The Cayley tree Tr is uniquely de�ned by being connected, r+1-regular and cycle-free; thus T1 is the
two-way in�nite path and T2 the complete binary tree. A (proper) q-coloring of Tr can be thought
of as a homomorphism ' from Tr to the complete graph Kq on q nodes, which we label f1; 2; : : : ; qg.
(We call the nodes of Tr \sites" in accordance with physics tradition and to distinguish them from
the nodes of the target graph Kq.)

What would it mean to choose such a coloring ' uniformly at random? If we were instead
coloring a �nite graph, there would be no di�culty in selecting ' with equal probability from the
�nitely many possibilities. Even on Tr, if the coloring were not constrained to be proper, uniformity
would be easily achievable by choosing the color of each site uniformly and independently.

In the case at hand, however, we are reduced to agreeing on what properties a \uniform"
probability measure on the space of colorings should have, and then asking whether there is a
unique measure with these properties.
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We will begin by listing every property we can think of that makes sense for the in�nite tree Tr
and holds for the uniform distribution on colorings of any �nite graph. Letting � be a measure on
proper colorings of Tr by q colors, we demand:

1. � is a Gibbs measure. This means that for any �nite subtree U of Tr, and any proper coloring
 of U , the probability that ' agrees with  on U , given that ' =  on the boundary of
U , is the same for ' drawn from � as it is for ' drawn uniformly from the set of all proper
colorings of U . (The boundary @U of U is the set of those points in U which are adjacent to
some point of Tr nU .) For much more information about Gibbs measures, in far more general
settings, the reader is referred to the excellent texts by Baxter and Georgii [1, 9].

2. � is simple. This means that if we draw ' from �, conditioned on any particular site u being
colored by any �xed color j, then the restrictions of ' to each connected component of Trnfug
are independent.

3. � is invariant. This means that for any automorphism � of Tr, � � � = �; in other words, if
A is any measurable set of colorings, then �(f' � � : ' 2 Ag) = �(A).

In statistical physics, the Cayley tree Tr is frequently called a \Bethe lattice". Coloring by q
colors with symmetric interactions produces the \q-state Potts model"; the model is \antiferro-
magnetic" if adjacent sites are discouraged (and \at zero temperature", forbidden) from having the
same color. The Bethe lattice is not a statistical physicist's �rst choice as a setting for theorems
on model behavior|a lattice such as a cubic grid, in some Euclidean space, is preferred|but it
has yielded many useful insights. Although variational methods used on more \amenable" lattices
do not always work on the Bethe lattice (see e.g. [6]), the absence of cycles permits direct methods
for analysis such as those we employ below.

1.2 Constraint Graphs and Activities

We now generalize the setting in two ways. First, let us replace the target graphKq by an arbitrary,
�nite \constraint graph" H. We can think of H as representing a generalized set of coloring
constraints, namely that adjacent sites of Tr may receive colors i and j if and only if i and j are
adjacent in H; if H has a loop at node i then color i may be used on both adjacent sites. Such a
coloring will be called a coloring by H when confusion with ordinary proper coloring is threatened.
The use of H is intended to model physical systems with hard constraints.

There are constraint graphs other than Kq of natural combinatorial interest, for instance the
graph J consisting of nodes 0 and 1 with an edge connecting the two nodes and a loop at node 0.
In any J-coloring of Tr the sites colored \1" form an independent set, and conversely. We are thus
talking now about random independent sets instead of random proper colorings, and there is again
a name for this model in statistical physics: the (discrete) hard-core lattice gas model, or \hard-core
model" for short. The intuition is that the sites colored \1" are occupied by a gas molecule, and
forces between molecules prevent occupation of two neighboring sites. (An elegant and accessible
treatment of the discrete hard-core model can be found in [2].)

The second generalization replaces the uniform distribution with a \multiplicative" distribution,
de�ned by positive reals �1; : : : ; �n associated with the nodes of H. The activity �i of node i re
ects
the relative preference given to color i; in particular, if the graph G to be colored by H is �nite,
the probability of a particular coloring ' is proportional toY

u2G

�'(u) :
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This implies in particular that if the colors of the neighbors of a site u are �xed in such a way
that colors j1; : : : ; jk are permissible at u, then the conditional probability that u is colored j1 is
�j1=(�j1 + � � � + �jk). This condition then applies also when G is in�nite, as a special case of the
Gibbs condition.

To see that the multiplicative measures really are a natural extension of the uniform, consider
for example the constraint graph which consists of a path on three nodes with a loop at the center
node. Coloring uniformly by this H is equivalent to selecting an independent set and then coloring
the nodes of that set by two colors; the distribution thus induced on uncolored independent sets is
the same as that given by coloring by J , with activities satisfying �1=�0 = 2.

For the hard-core model, activity can be thought of as the result of applying pressure (positive
or negative) to the gas, and is often called \fugacity".

For the Potts model, the activity of any single color is controlled by an \external �eld". The
e�ect of the �eld, however, is understood by physicists to become in�nite when the temperature
reaches 0; thus non-uniform activity sets fall outside their framework at zero temperature. The
result is that many of the questions we attack, motivated by our combinatorial point of view, are
not explored e.g. in the analysis of the antiferromagnetic Potts model on the Bethe lattice found
in Peruggi et al. [14, 15, 16].

A physicist might even argue that there is nothing special at all about the uniform distribution,
for example in the hard-core model. However, if the constraint graph is symmetric then the uniform
distribution (where all the activities are equal) preserves this symmetry; and in fact we will see
that in critical cases, the uniform set of activities stands apart from all others.

1.3 Semi-invariance

In much more general settings than ours, a result of Dobrushin [7] states that there is always at
least one Gibbs measure for a given \speci�cation". The problem of determining when there is more
than one such Gibbs measure is a central problem of statistical mechanics, often called the DLR
problem after Dobrushin, Lanford and Ruelle (see e.g. [17]); when more than one Gibbs measure
exists, there is said (by some) to be a phase transition.

The DLR problem for uniformly random colorings of Tr can be put entirely in �nite combinat-
orial terms. Let T nr be an n-level r-branching tree, and choose a proper q-coloring of T nr uniformly
at random. Let pn be the maximum probability that the root is colored \red" given the colors of
the leaves; then pn ! 1=q if and only if there is a unique uniform Gibbs measure for q-colorings of
Tr. Roughly speaking, if there is a phase transition, then there is \long-range order" meaning that
the color of a site can be in
uenced by the colors of sites arbitrarily far away. We give more details
in Section 3.4.

We are particularly interested in Gibbs measures satisfying the nice conditions given in Section
1.1, but we would like sometimes to relax one of our conditions slightly as follows. A measure is said
to be semi-invariant if it is invariant under even automorphisms of Tr, i.e. those automorphisms
which preserve the parity of a site. (For speci�city, we choose a root w of Tr which is deemed to
be of parity 0 mod 2, the parity of all other points being equivalent mod 2 to their distance to w.)

The hard-core model on Tr has been extensively studied (see e.g. [10, 9, 4, 3]); for any r and
any � := �1=�0, there is a unique simple invariant Gibbs measure. However, for � > rr=(r�1)r+1
there are two additional simple semi-invariant Gibbs measures, one with most of its independent
set on even sites, the other mostly on odd.

We will see that the situation for proper colorings is similar in two respects: there is always
a unique simple invariant Gibbs measure, and sometimes multiple simple semi-invariant Gibbs
measures. For instance, in the case q = r+1 (q-coloring the q-regular tree), it will turn out that
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there is a unique simple semi-invariant Gibbs measure only when �1 = �2 = � � � = �q.
Our results come from a very useful correspondence between invariant (and semi-invariant)

simple Gibbs measures, and node-weighted branching random walks on a constraint graph.

2 Gibbs Measures

2.1 Homomorphisms

As noted Tr will always stand for the (r+1)-regular Cayley tree and H for a �nite constraint
graph, possibly with loops. If G is any �nite or in�nite graph (the \board") we denote the space
of homomorphisms from G to H by Hom(G;H). Adjacency between sites of G or nodes of H is
denoted by �, so that ' 2 Hom(G;H) and u � v in G imply '(u) � '(v) in H.

Assume that a positive real activity �i is associated with each node i of H. If the board G is
�nite, we denote the resulting multiplicative probability distribution on Hom(G;H) by mG; thus

mG(f g) :=
Q
u2G � (u)P

'2Hom(G;H)

Q
u2G �'(u)

:

When the board is in�nite, there is a bit more work to be done in determining when a measure
on Hom(G;H) meets the \speci�cations" given by the set of activities on H. To begin with, a �nite
set U of sites of G will be called a patch and we will deliberately confuse U with the subgraph of
G induced by U . As before, the boundary @U of U will be the set of sites in U which are adjacent
to at least one site of GnU .

If U is a patch and ' 2 Hom(G;H), we denote by ' � U the restriction of ' to U ; thus
'�U 2 Hom(U;H). If A is an event of the form

A = f' 2 Hom(G;H) : '�U 2 Fg

for some patch U and some F � Hom(U;H), then we call A a \patch event". We equip Hom(G;H)
with the �-�eld (denoted by F) generated by the patch events, and consider henceforth only
measures � on hHom(G;H);Fi such that �(Hom(G;H)) = 1.

Let U1 � U2 � � � � be a nested sequence of patches whose union is G. We can de�ne a compact
topology on the space M of all probability measures on Hom(G;H) via the metric � de�ned as
follows:

�(�; �) =

1X
i=1

2�ik��Ui; � �Uik

where ��U is the measure induced by � on Hom(U;H), and k�k is the total variation metric between
probability distributions (a.k.a. half the `1 distance). Of course this topology is not sensitive to the
choice of the Ui's, but it is useful to �x them anyway.

A measure � on Hom(G;H) is said to be a Gibbs measure if for any patch U � G, and almost
every  2 Hom(G;H),

Pr
�

�
'�U =  �U '�

�
(G n U) [ @U� =  �

�
(G n U) [ @U�� = Pr

mU

�
'�U =  �U '�@U =  �@U

�
:

It su�ces to verify the Gibbs condition for the Ui's in our nested sequence; e.g. in the case G = Tr,
for Ui equal to the set of sites at distance at most i from the root.

It may be possible for a measure to satisfy the Gibbs condition in a trivial and somewhat
unsatisfactory way. For example, suppose we are q-coloring Tr (with root w) for some q � r+1,
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Figure 1: A frozen 3-coloring of the complete binary tree

and let  be any �xed coloring in which the children of every node exhibit all colors other than the
color of the parent. Let � be the measure which assigns probability 1 to  . Then the colors of  on
any @Ui force the colors on @Ui�1 and so on all the way to the root, thus matching mU regardless
of the activities. Thus � is a (\frozen") Gibbs measure, and is also vacuously simple|but not
invariant or semi-invariant. A frozen state of Hom(T2;K3) is illustrated in Fig. 1; for more about
frozen Gibbs measures the reader is referred to [5]. (Note that frozen Gibbs measures can only
occur when adjacent sites are absolutely forbidden to have the same color; that is, appropriately, at
zero temperature. This accounts for their absence from most of the statistical physics literature.)

Normally the activities a�ect the de�nition of Gibbs measure via their tacit role in mU . The re-
maining properties of measures that we use|simplicity, invariance and semi-invariance|are de�ned
in the previous section for the case G = Tr (which is all we shall need) and do not depend on the
activities.
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2.2 Simple Invariant Gibbs Measures

Simple invariant Gibbs measures on Hom(Tr;H) for arbitrary H were studied in [4], and the results
can be applied directly to the case H = Kq. We need only this half of the main theorem of [4]:

Theorem 2.1. Let H be a connected graph which satis�es the following two conditions:

(a) Every looped node of H is adjacent to all other nodes of H;

(b) With its loops deleted, H is a complete multipartite graph.

Then for every set of activities on H, and every r � 1, there is a unique simple invariant Gibbs

measure on the space Hom(Tr;H).

Since the graphs Kq (as well as J) satisfy the two conditions, we conclude that for the scope of
this paper, we always have a unique simple invariant Gibbs measure.

The proof of the main theorem in [4] relied strongly on the fact that simple invariant Gibbs
measures on Hom(Tr;H) are relatively tangible objects, obtainable by branching random walks on
H. The measures are obtained as follows.

Let H be arbitrary but connected, and give each node i of H a positive real weight wi. Let the
probability distribution � on the nodes of H be de�ned by letting �i be proportional to wi

P
j�iwj

(� is then the stationary distribution for a random walk on H weighted by the wi). We can
(randomly) determine a coloring ' of Tr by H as follows:

First, drop an amoeba onto H which lands on node i with probability �i; this i becomes the
color of the root w of Tr.

Second, the amoeba divides into r+1 baby amoebas and each takes an independent random
step to a neighbor j of i, with probabilities proportional to wj. These j's become the colors of w's
r+1 children.

Next, each baby amoeba divides into r new amoebas, and all take independent random steps
to neighbors, always in accordance with the weights. These grand-babies determine the colors of
the r(r+1) grandchildren of w.

The process continues, each new amoeba splitting r ways at the next step, and every site of Tr
is thus colored. The following theorem from [4] is critical, though quite straightforward to prove.

Theorem 2.2. The above process produces a simple invariant Gibbs measure on Hom(Tr;H) for
activities given by:

�i =
wi�P
j�iwj

�r :
Moreover, every simple invariant Gibbs measure on Hom(Tr;H) can be obtained in this way.

Results similar to, but not quite the same as, Theorem 2.2 had earlier been proved by Peruggi
[13] and Zachary [20].

The map which transforms the weights into activities is surjective and, in the cases considered in
this paper, injective as well. We will see that things get much more interesting when the invariance
condition is relaxed to semi-invariance.

2.3 Constraint Graphs and Their Doubles

A graph H is said to be ergodic if it is connected and not bipartite (note that a graph containing
a loop cannot be bipartite). Thus the graphs Kq for q > 2, and the graph J above associated with
the hard-core model, are ergodic.
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Given an ergodic graph H on nodes 1; 2; : : : ; q we form its bipartite \double", denoted 2H, as
follows: the nodes of 2H are f1; 2 : : : ; qg [ f�1;�2; : : : ;�qg with an edge between i and j just
when i � �j or �i � j in H. Note that 2H is loopless; a loop at node i in H becomes the edge
f�i; ig in 2H.

A coloring  of Tr by 2H induces a coloring j j byH via j j(v) = j (v)j. In the reverse direction,
a coloring ' of Tr by H may be transformed to a coloring �' by 2H, by putting �'(v) = '(v) for
even sites v 2 Tr and �'(v) = �'(v) for odd v.

Let � = (�1; : : : ; �n) be a set of activities for H and suppose that � is a simple invariant
Gibbs measure on Hom(Tr;H) corresponding to �. From � we can obtain a simple invariant Gibbs
measure �� on Hom(Tr; 2H) by selecting ' from �, and 
ipping a fair coin to decide between �' (as
de�ned above) and � �'. Obviously �� yields the activity set �� on 2H given by ��i = �jij. Furthermore,
the weights on H which produce � extend to 2H by w�i = wi.

Conversely, suppose � is a simple invariant Gibbs measure on Hom(Tr; 2H) whose activity set
satis�es ��i = �i for each i. Then the measure j�j, obtained by choosing  from � and taking its
absolute value, is certainly an invariant Gibbs measure on Hom(Tr;H) for � � f1; : : : ; qg, but is it
simple?

In fact, if the weights on 2H which produce � do not satisfy w�i = cwi, then j�j will fail
to be simple. To see this, observe that if the weights are not proportional then there are nodes
i � j of H such that p�i;�j 6= pi;j in the random walk on 2H. Suppose that j j is conditioned
on the color of the root w of Tr being �xed at i, and let x and y be distinct neighbors of w. Set
� = Pr( (w) = i j j (w)j = i). Then

Pr(j j(x) = j) = (1� �)p�i;�j + �pi;j

but
Pr(j j(x) = j ^ j j(y) = j) = (1� �)p2�i;�j + �p2i;j > Pr(j j(x) = j)2

so the colors of x and y are not independent given j j(w).
However, we can recover simplicity at the expense of one bit worth of symmetry. Let �+ be �

conditioned on  (u) > 0, and de�ne �� similarly. Then j�+j and j��j are essentially the same as
�+ and ��, respectively, and all are simple; but these measures are only semi-invariant.

On the other hand, suppose � is a simple semi-invariant Gibbs measure on Hom(Tr;H). Let �
be a parity-reversing automorphism of Tr and de�ne �0 := � � �, so that 1

2�+
1
2�

0 is fully invariant
(but generally no longer simple). However, � := 1

2 �� + 1
2(��0) is a simple and invariant Gibbs

measure on Hom(Tr; 2H), thus given by a node-weighted random walk on 2H. We can recover �
as �+, hence:

Theorem 2.3. Every simple semi-invariant Gibbs measure on Hom(Tr;H) is obtainable from a

node-weighted branching random walk on 2H, with its initial state drawn from the stationary dis-

tribution on positive nodes of 2H.

Suppose, instead of beginning with a measure, we start by weighting the nodes of 2H and
creating a Gibbs measure as in Theorem 2.3. Suppose the activities of the measure are f�i : i =
�1; : : : ;�qg. By identifying color �i with i for each i > 0, we create a measure on H-colorings, but
this will not be a Gibbs measure unless it happens that ��1; : : : ; ��q are proportional to �1; : : : ; �q.

We could assure this easily enough by making the weights proportional as well, e.g. by w�i = wi;
then the resulting measure on Hom(G;H) could have been obtained directly by applying these
weights to H, and is thus a fully invariant simple Gibbs measure. To get new, semi-invariant Gibbs
measures on Hom(G;H), we must somehow devise weights for 2H such that w�i 6/ wi yet ��i / �i.
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Figure 2: An asymmetric phase for 3-coloring a 3-branching tree

Restated with slightly di�erent notation, simple semi-invariant Gibbs measures are in 1{1 cor-
respondence with solutions to the \fundamental equations"

�i =
ui�P
j�i vj

�r = vi�P
j�i uj

�r
for i = 1; : : : ; q. Such a solution will be invariant if ui = vi for each i.

Figure 2 illustrates a semi-invariant, but not invariant, simple Gibbs measure for uniform 3-
colorings of T3. Approximate weights of the nodes of 2H = 2K3 are given along with part of a
sample coloring drawn from this measure. Additional measures may be obtained by permuting the
colors or by making all the weights equal (invariant case).

3 Results

3.1 Semi-invariant Measures: General r and q

We are now in a position to begin answering the key question of this paper: for which r and q, and
which sets of activities, is there a unique simple semi-invariant Gibbs measure on Hom(Tr;Kq)?

Let us dispose of the less interesting cases �rst. If q = 2 there are only two possible colorings of
Tr, and every measure on Hom(Tr;K2) is a convex combination of the two; all of these are simple
semi-invariant Gibbs measures but only the 1

2{
1
2 mix is fully invariant.

The Cayley tree T1 is a doubly-in�nite path, known for not exhibiting phase transitions even
in much more general circumstances than ours. For all q > 2 and all sets of activities for Kq, the
only Gibbs measure of any kind on Hom(T1;Kq) is the one given by a (non-branching) stationary
node-weighted random walk on Kq. The weights are uniquely determined by the activities (see [4]
for a direct proof).

Henceforth we will assume that r � 2 and q � 3. When q < r+1, we will see that all choices of
activities including the uniform set yield multiple simple semi-invariant Gibbs measures.

When q > r+1, there is only one simple semi-invariant Gibbs measure for the uniform set of
activities, but multiple simple semi-invariant Gibbs measures for some other choices of activities.

The critical case is at q = r+1, that is, when the number of colors is equal to the degree of the
Cayley tree. Here we will show that there are multiple simple semi-invariant Gibbs measures for
all activities except the uniform case, where there is just one.

If we consider all possible Gibbs measures, we �nd frozen measures (such as the ones mentioned
above) and others whenever q � r+1. We believe that when q > r+1 and the activities are equal,
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the unique simple semi-invariant Gibbs measure is in fact the only Gibbs measure of any kind; we
are able to prove this, however, only for q > cr, with �xed c > 1.

3.2 Multiple Simple Semi-invariant Gibbs Measures

Our next task is to show the existence of multiple simple semi-invariant Gibbs measures for certain
values of q and r and certain ranges of the activities.

Theorem 3.1. There are multiple simple semi-invariant Gibbs measures for Hom(Tr;Kq) in the

following cases:

� q < r+1, for all sets of activities;

� q � r+1, for all non-uniform sets of activities;

� any q; r > 1, for some non-uniform sets of activities.

The uniform case with q < r+1 is contained in the work of Peruggi, di Liberto and Monroy [16],
where they �nd phase transitions of several types at zero temperature and zero external �eld. The
other cases are in line with their work but, as we mentioned earlier, the case of hard constraints
and �nite variation from uniform activities does not have an exact counterpart in the physicists'
setting.

Proof. We proceed indirectly, by showing that, in certain circumstances, the solution to a certain
optimization problem is an \asymmetric" solution to the fundamental equations, and so corresponds
to a simple Gibbs measure that is semi-invariant but not invariant. There will also always be a
simple invariant Gibbs measure, and of course another simple semi-invariant Gibbs emasure can be
obtained by switching the parity. The quantities involved in our optimization problem do not seem
to be equivalent to any of the usual physical parameters such as pressure or mean free energy.

Given any non-negative real vectors � = (�1; : : : ; �q), u = (u1; : : : ; uq) and v = (v1; : : : ; vq), set

G(u;v) =
X
j 6=k

ujvk ; H�(u) =

qX
j=1

u
1+1=r
j

�
1=r
j

:

For any �xed q � 3, r � 2 and vector � > 0, consider the problem of maximizing G(u;v) over
non-negative u, v, subject to the constraints H�(u) � 1, H�(v) � 1.

Note that the constraints de�ne a compact region of R2q , and that G is continuous over this
region, so the maximum is attained.

Suppose that some variable uj or vj is zero at the maximum. Then there are some k, l distinct
from j with uj = 0, vk > 0, and ul > 0 (or similarly with the roles of u and v interchanged).
Then @G=@uj � vk > 0, @H�(u)=@uj = 0, while @H�(u)=@ul > 0 at the supposed maximum.
Hence it is possible, by increasing uj and decreasing ul, to increase G while holding H�(u) �xed|a
contradiction.

Therefore all the variables are strictly positive at the maximum, and clearly we have equality
in the constraints H�(u), H�(v) � 1. This means that the maximum will be a stationary point of
the Lagrangian

L(u;v; �1; �2) = G(u;v) � �1 (H�(u)� 1)� �2 (H�(v)� 1) :

9



Setting the partial derivatives of L equal to 0 gives us:

P
k 6=j vk = �1

r+1
r

�
uj
�j

�1=r
(j = 1; : : : ; q) ;

P
k 6=j uk = �2

r+1
r

�
vj
�j

�1=r
(j = 1; : : : ; q) ;

together with the constraints H�(u) = H�(v) = 1. Solutions to this system of equations are in
1{1 correspondence with solutions to the fundamental equations, and therefore with simple semi-
invariant Gibbs measures for the set of activities �.

We know that there is one invariant solution, and therefore a stationary point with uj = vj for
all j and �1 = �2 = �. Let wj be the common value of uj and vj at this point. If this is the only
solution to the fundamental equations, then this must be the solution to our optimization problem.

Suppose that w1 � w2 � � � � � wq (this is equivalent to �1 � �2 � � � � � �q). Suppose also that
either q < r+1 or q = r+1 and the �j (hence the wj) are not all equal. Observe then that, in either
case,

P
j 6=1wj � (q � 1)w2 � rw2, and

P
j 6=2wj � (q � 1)w1 � rw1. Furthermore, equality is not

possible in the latter inequality, and we can choose 
 > 0 such that

2 >
(1 + 
)

r

�P
j 6=2wj

w1
+

P
j 6=1wj

w2

�
:

In the case q > r+1, we can �nd weights wj, and 
 > 0, satisfying the above inequality. Such
weights de�ne a set of activities, and it is this set for which we claim that there are multiple simple
semi-invariant Gibbs measures.

Now choose a small � > 0, set

�1 = �

�
w2
�2

�1=r
; �2 = �

�
w1
�1

�1=r
;

and consider the e�ect of the following small changes to the variables:

u1 = w1 + �1 � �21(1+
)
2rw1

;

u2 = w2 � �2 � �22(1+
)
2rw2

;

v1 = w1 � �1 � �21(1+
)
2rw1

;

v2 = w2 + �2 � �22(1+
)
2rw2

:

For j > 2, we keep uj = vj = wj .
We have that

H�(u) = H�(w) +
w
1+1=r
1

�
1=r
1

��
u1
w1

�1+1=r
� 1

�
+

w
1+1=r
2

�
1=r
2

��
u2
w2

�1+1=r
� 1

�

= H�(w) +
w
1+1=r
1

�
1=r
1

�
�1
w1
�
�
�1
w1

�2

(r+1)
2r2

+O
�
�1
w1

�3�

� w
1+1=r
2

�
1=r
2

�
�2
w2

+
�
�2
w2

�2 
(r+1)
2r2

+O
�
�2
w2

�3�
:

By choice of �1 and �2, the �rst order terms cancel. Thus, for � su�ciently small, we have H�(u) �
H�(w) = 1. Similarly H�(v) � H�(w) = 1 for small �, so our new choice is feasible.
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Now let us determine the e�ect on G(u;v). To simplify matters, de�ne xj = (wj=�j)
1=r for

each j, and � = �(1 + 1=r), so that
P

k 6=j wk = �xj for j = 1; 2.
Then we have

G(u;v) �G(w;w) = �
�
(u1 � w1)x1 + (u2 � w2)x2 + (v1 � w1)x1 + (v2 � w2)x2

�
+(u1 � w1)(v2 � w2) + (u2 � w2)(v1 � w1)

= ��x1x2

h�
1� �x2(1+
)

2rw1

�
+
�
�1� �x1(1+
)

2rw2

�
+
�
�1� �x2(1+
)

2rw1

�
+
�
1� �x1(1+
)

2rw2

�i
+ 2�2x1x2 +O(�3)

= �2x1x2

�
2� �(1+
)

r

�
x2
w1

+ x1
w2

��
+O(�3)

= �2x1x2

�
2� 1+


r

�P
k 6=2 wk
w1

+
P

k 6=1 wk
w2

��
+O(�3) :

By choice of 
, this is positive for � su�ciently small.
In conclusion, making the indicated change to u and v keeps the solution feasible while increas-

ing the objective function, thus proving that the choice w is not a maximum.

3.3 Unique Simple Semi-invariant Gibbs Measures

We saw in the previous section that for q < r+1, there are multiple simple semi-invariant Gibbs
measures for all activities, including uniform. Here we show that in the uniform case, this threshold
is exact.

Theorem 3.2. For q � r+1, there is only one simple semi-invariant Gibbs measure on Hom(Tr;Kq)
with uniform activities.

Proof. Suppose that there are weights (u1; u2; : : : ; uq; v1; v2; : : : ; vq) satisfying the fundamental
equations with �1 = � � � = �q = 1, so that

uj =
�X
k 6=j

vk

�r
; vj =

�X
k 6=j

uk

�r
(j = 1; : : : ; q) :

Suppose that u1 � u2 � � � � � uq, which implies that v1 � v2 � � � � � vq. Set

� = u1=uq; � =
u1 + u2 + � � �+ uq�1

(q � 1)uq
;

so that � � � � 1.
We know that all the weights are equal at the unique invariant solution, so what we are claiming

is that there is no solution to the equations above with � > 1.
We have

�1=r =

�
u1
uq

�1=r
= 1 +

vq � v1Pq�1
k=1 vk

:

Note that

q�1X
k=1

vk =

q�1X
k=1

�
uq + (q � 2)�uq + (�uq � uk)

�r � (q � 1) (uq + (q � 2)�uq)
r ;

11



since the terms (�uq � uk) sum to zero. Hence, using also that v1 = ((q � 1)� + 1 � �)rurq,
vq = ((q � 1)�)rurq, we see that

�1=r � 1 +

�
(q�1)�

�r
�
�
(q�1)�+1��

�r
(q�1)

�
1+(q�2)�

�r
= 1 +

1�
�
1� ��1

(q�1)�

�r

(q�1)
�
1� ��1

(q�1)�

�r :

The right hand side here is decreasing in q, so for q � r+1 we have

0 � Fr(�; �) = ��1=r + 1 +
1�

�
1� ��1

r�

�r
r
�
1� ��1

r�

�r :

We next claim that Fr(�; �) is decreasing in �. To see this, we start by observing that

@Fr
@� = 1

r

�
���(r�1)=r + 1

�
(1�(��1)=r�)r�1

(1�(��1)=r�)r

�
= ��(r�1)=r

�
�1 + G(�)(r�1)=r

G(�)

�
;

where the function G(x) = x(1� (x�1)=r�)r is decreasing for x � �, and satis�es G(�) � 1. Thus

G(�) � G(�)(r�1)=r � G(�)(r�1)=r ;

and so indeed Fr is decreasing in �. Therefore we have

0 � Fr(�; �) � Fr(�; �) = Hr(�) = ��1=r + 1 +
1

r

 �
1� � � 1

r�

��r
� 1

!
:

Now we claim that Hr(�) is decreasing in �. Indeed, its derivative, multiplied by r, is

�1
�(r�1)=r

+
�r�1�

1 + r�1
r (� � 1)

�r+1 :
This is negative since 1 + r�1

r (� � 1) � (1 + (� � 1))(r�1)=r = �(r�1)=r, and also we have strict
inequality if � > 1, so Hr(�) � Hr(1) = 0, with strict inequality, and therefore a contradiction,
unless � = 1.

In conclusion, in the case we are considering, there is no solution to the fundamental equations
unless all the weights are equal, which is the required result.

3.4 Uniqueness of Gibbs Measures

In this subsection we will show that when q is su�ciently large relative to r, there is just one
Gibbs measure for Hom(Tr;Kq) with uniform activities. Salas and Sokal [18], and apparently also
Koteck�y as cited in [9], were able to show that with any board of maximum degree r+1, there is
a unique Gibbs measure in the uniform case as long as q > 2r+2. We can do somewhat better in
our special case.

Our approach is to show that there is, indeed, no long-range order; that is, the restriction of a
random coloring ' to far-away sites has diminishing e�ect on the values of ' on a �xed patch of
Tr.

12



Given r probability vectors p1 = (p11; : : : ; p1q), : : : , pr = (pr1; : : : ; prq) in [0; 1]q, each with
entries summing to 1, we form their Potts product p1�� � � �pr as the probability vector proportional
to (p011p

0
21 � � � p0r1; : : : ; p01qp02q � � � p0rq), where p0ij = 1� pij, for i = 1; : : : ; r, and j = 1; : : : ; q.

Given q and r, and a positive integer n, consider a �nite portion T nr of Tr, de�ned from Tr by
deleting one of the r+1 branches from the root, and taking for T nr all sites at distance at most n from
the root. Now, for every assignment of a probability vector p(u) to each leaf u of T nr , we recursively
de�ne a probability vector p(x) at each internal site x of T nr as the Potts product p(x1)�� � ��p(xr),
where x1; : : : ; xr are the children of x. In particular, any assignment of a probability vector to each
leaf gives rise to a probability vector p(w) at the root w.

Suppose that each probability vector assigned to a leaf is a 0{1 vector, to be thought of as
specifying the color of that leaf, and p(w) = (p1; : : : ; pq). We claim then that the number of proper
q-colorings of T nr , such that the leaf colors are as speci�ed and the root has color j, is proportional
to pj. This can be seen easily by working in from the leaves.

We would like to �nd conditions (on q and r) guaranteeing that, as n ! 1, the root vector
p(w) tends to the uniform vector (1=q; : : : ; 1=q), regardless of the leaf vectors. As we shall see, this
implies that there is a unique Gibbs measure in this case.

To get some feel for this, consider the case q = r+1, take a frozen q-coloring ' of the tree Tr,
and delete a branch from the root corresponding to a repeated color among the children of the
root. Now the colors on sites u at distance n from the root produce 0{1 probability vectors p(u).
For any internal vertex x, we claim that the derived probability vector p(x) is also the 0{1 vector
corresponding to '(x), which we may take to be the last color q. Indeed, note that the r children
of x are each given one of the colors 1, 2, : : : , q� 1, so we may assume for an induction that their
assigned vectors are (1; 0; : : : ; 0), (0; 1; 0; : : : ; 0), : : : , (0; : : : ; 0; 1; 0). The Potts product of these
vectors is (0; : : : ; 0; 1), which indeed corresponds to the assignment of color q to x. Hence the root
vector p(w) does not necessarily converge to uniform as n!1 in the case q = r+1.

De�ne the eccentricity E(x) of a non-negative vector x = (x1; : : : ; xq) to be

X
j 6=k

(xj � xk)
2
.0@ qX

j=1

xj

1
A
2

:

Note that the denominator is 1 for a probability vector, while the eccentricity is invariant under
scaling: E(tx) = E(x) for all scalars t and vectors x.

Let M(q; r;n) be the maximum eccentricity of p(w), over all assignments of probability vectors
p(u) to the leaves u of T nr .

Theorem 3.3. Suppose that q and r are such that M(q; r;n) ! 0 as n ! 1. Then there is a

unique Gibbs measure (namely, the simple invariant Gibbs measure generated by the node-weighted

branching random walk) for Hom(Tr;Kq) with uniform activities.

Proof. Let � be any Gibbs measure; we aim to show that � is equal to the measure � de�ned from
the r-branching random walk on Kq, with all nodes weighted equally.

To show that the two measures are equal, take any patch U , any proper coloring ' of U , and
any " > 0. We need to show that jPr�( = ') � Pr�( = ')j < ". We may assume (by taking a
larger patch if necessary) that U is connected (so it is a subtree of Tr), and that all its elements
have degree 1 or r+1. Note that Pr�( = ') = 1=q(q� 1)jU j�1, since all of the q(q� 1)jU j�1 proper
q-colorings of U are equally likely under �.

Suppose that U has ` leaves. Now choose n su�ciently large (to be speci�ed later), and let V
denote the set of all sites of Tr at distance at most n from our patch U . Note that (V n U) [ @U
consists of ` disjoint copies of T kr , one rooted at each leaf of U .

13



We generate a random sample from the Gibbs measure � according to the following procedure:
�rst take a random sample  from �, then uncolor all sites in V n @V . Now choose, uniformly at
random, a proper coloring of V n @V consistent with the coloring of @V . By the Gibbs property,
this is a valid way of constructing a sample coloring  0.

Now take any coloring ' of U , and observe that the probability that  0 � U = ' is equal to
the sum, over all colorings � of @V , of Pr�( � @V = �) Pr( 0 �U = ' j  � @V = �). The second
probability here refers only to the recoloring phase, and so is proportional to the number of proper
colorings of V n (U [ @V ) consistent with both the coloring � of @V and the coloring '�@U of the
leaves of U . This is, by the earlier discussion, proportional to the product, over all the leaves u of
U , of the '(u)-entry of the vector p(u) generated from the 0{1 probability vectors set (by �) at the
leaves of the copy of T nr rooted at u. This vector p(u) has eccentricity at most M =M(q; r;n), by
de�nition, and so each entry is within

p
M of 1=q. Hence the probability Pr( 0 �U = ' j  �@V = �)

is proportional to a number lying between (1=q � p
M)` and (1=q +

p
M)`, for every ' and �.

Therefore 
1=q �p

M

1=q +
p
M

!`
1

q(q � 1)jU j�1
� Pr( 0 �U = ') �

 
1=q +

p
M

1=q �p
M

!`
1

q(q � 1)jU j�1
;

so we can ensure that Pr( 0 �U = ') is within " of 1=q(q � 1)jU j�1 by choosing n to make M small
enough.

To prove that M(q; r;n) ! 0, the obvious approach is to show that, if p1; : : : ;pr are any
probability vectors with eccentricities at most m, then the eccentricity of p1 � � � � � pr is at most
tm for some t < 1. It turns out to be worthwhile to re�ne this approach somewhat.

We start with a lemma dealing with the normalization involved in the de�nition of the Potts
product.

Lemma 3.4. Suppose p1 = (p11; : : : ; p1q), : : : , pr = (pr1; : : : ; prq) are probability vectors, all of
whose entries are at most U . Then

qX
j=1

p01j � � � p0rj � max
�
q � r; q(1 � U)r=qU

�
:

and so in particular every entry of p1 � � � � � pr is at most 1=(q � r).

Proof. Consider the problem of minimizing
Pq

j=1 p
0
1j � � � p0rj, subject to the conditions that all the

p0ij are (to start with) between 0 and 1, and
Pq

j=1 p
0
ij = q � 1 for all i = 1; : : : ; r. For any �xed

assignment of values to all the variables except p0i1; : : : ; p
0
iq (for some �xed i), it is clear that the

minimum is obtained by setting q � 1 of these variables to 1, and the other (that value p0ij whose
multiplier

Q
h6=i p

0
hj is maximum) to 0. Hence, at the optimum, exactly r of the qr variables p0ij are

set to 0, making r of the terms p01j � � � p0rj equal to 0, and the other q�r terms equal to 1. Therefore

qX
j=1

p01j � � � p0rj � q � r :

To see the other bound, we start by using the arithmetic-geometric mean inequality to �nd that

qX
j=1

rY
i=1

p0ij � q

0
@ qY
j=1

rY
i=1

p0ij

1
A
1=q

:
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Now each of the qr terms p0ij can be written as 1� �ijU , where 0 � �ij � 1. Since the sum of all
the qr terms p0ij is r(q � 1), the sum of all the �ij is equal to r=U . Now since

p0ij = 1� �ijU � (1� U)�ij ;

we have
qX
j=1

rY
i=1

p0ij � q
�
(1� U)r=U

�1=q
;

as desired.
The �nal statement follows because an entry of p1 � � � � � pr is obtained by dividing a number

at most 1 by a normalizing factor of at least q�r.
Note: We can also see informally that the entries of p1 � � � � � pr are at least 1=(q�r), by

interpreting pij as the probability that the ith child of a site u has color j; since any possible
coloring of the children permits at least q�r colors at u, the probability of any one color at u is at
most 1=(q�r).

Thus, if we take any probability vectors at the leaves of our T nr , the entries of their Potts
products, one layer in, are all at most U = 1=(q�r). This in turn implies a lower bound on the
entries two layers in, namely L = (1� 1=(q�r))r=(q�1), since q�1 is an easy upper bound on the
normalization constant. Better bounds could be found by iterating this procedure.

To prove that M(q; r;n) ! 0 as n ! 1, it thus su�ces to show that, if p1 = (p11; � � � ; p1q),
: : : , pr = (pr1; : : : ; prq) are probability vectors with eccentricity at most m and entries between L
and U , then E(p1 � � � � � pr) � tm for some t < 1.

Accordingly, take such vectors p1; : : : ;pr, and consider

E(p1 � � � � � pr) =
P

k 6=j

�
p01j � � � p0rj � p01k : : : p

0
rk

�2�Pq
j=1 p

0
1j � � � p0rj

�2 :

We need an upper bound on the numerator of this expression, which we can then combine with the
lower bound on the denominator given by Lemma 3.4.

By telescoping, we see that

p01j � � � p0rj � p01k � � � p0rk =
rX
i=1

(p0ij � p0ik)
Y
h<i

p0hj
Y
h>i

p0hk :

Since all the p0ij are at most 1�L, while p0ij � p0ik = pik � pij, we �nd that

��p01j � � � p0rj � p01k � � � p0rk
�� � (1� L)r�1

rX
i=1

jpik � pij j :

Thus we haveP
j 6=k

�
p01j � � � p0rj � p01k � � � p0rk

�2 � (1� L)2(r�1)
P

j 6=k

�Pr
i=1 jpik � pij j

�2
� (1� L)2(r�1)r

Pr
i=1

P
j 6=k(pik � pij)

2

� r2(1� L)2(r�1)m :

Combining this bound with that from Lemma 3.4, we see that

E(p1 � � � � � pr) � min

(�
r(1� L)r�1

q � r

�2
;

�
r(1� L)r�1

q(1� U)r=qU

�2)
�m :
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Hence if q and r are such that either of the two terms is less than 1, for the values of L and U given
earlier, then there is a unique Gibbs measure for Hom(Tr;Kq), with uniform activities.

In particular, if q � 2r, then r(1�L)r�1=(q�r) < 1 and we have uniqueness. Also, if r and q
are both large, with q = (d+ 1)r, then U = 1=dr, L � e�1=d=(d+ 1)r, and

r(1� L)r�1

q(1� U)r=qU
� 1

d+ 1
exp

 
1� e�1=d

d+ 1

!
:

This quantity is less than 1 for d > 0:6296. Therefore we have the following result.

Theorem 3.5. Suppose that q � 2r, or that q � 1:6296 r and r is su�ciently large. Then there is

a unique Gibbs measure for Hom(Tr;Kq), with uniform activities.

The reader will have no di�culty in improving the constant 1.6296 in the above theorem. Our
own calculations give also a more speci�c bound, namely that we have a unique uniform Gibbs
measure when r � 5 and q > (53 )r. However, what we believe is that there is a unique Gibbs
measure even for q = r+2, and this method does not seem able to give any result of this type.
Even the case q = 5, r = 3 remains a challenge, although it is not impossible that the method used
here can be improved to cover this case.

4 Remarks and Conjectures

We have pretty much settled the question of when there is more than one simple semi-invariant
Gibbs measure, but have left some important open questions concerning general Gibbs measures.

We have shown that, when q � r+1, there is only one simple semi-invariant Gibbs measure in
the uniform case, but multiple such measures for some non-uniform activity sets. We suspect that
when q > r+1, there is only one Gibbs measure of any kind for the uniform set of activities. We
have been able to prove this for q = 4 and r = 2, and generally when q � 2r and, for large r, when
q � 1:6296 r.

For the critical case q = r+1, all non-uniform sets of activities produce multiple simple semi-
invariant Gibbs measures. There are other Gibbs measures, however, regardless of the activity set,
and it appears to be a daunting challenge to classify them|even in the ground case q = 3, r = 2.

When q < r+1, we know that there are multiple simple semi-invariant Gibbs measures for every
set of activities (plus frozen Gibbs measures and more).

The state of a�airs is roughly illustrated in Figure 3.
There are many related issues which we have not considered in this work. For example, the

question of whether our simple semi-invariant Gibbs measures are extremal (that is, not mixes of
other Gibbs measures) is complex, and linked to the issue of whether information about the starting
state of a branching random walk is available from states reached at a much later time (see e.g.
[5, 8, 11, 12]). (We can show that for q � r+1, the simple invariant Gibbs measure for the uniform
set of activities is indeed extremal.)

The DLR problem (uniqueness of Gibbs measures) is itself closely allied with the problem of
whether \heat bath" dynamics, which make local changes to colorings of a large �nite board,
constitute rapidly mixing Markov chains. For example, Vigoda [19] has shown that when the
number of colors is at least 11/6 times the maximum degree of the board, rapid mixing ensues; it
is thus arguably noteworthy that our constant 1.6296 undercuts 11/6.
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r2 3 4 5 6 7 8 9

q

3

4

5

6

7

8

9

10

multiple simple semi−invariant and non−semi−invariant Gibbs measures
    for all activities

unique simple semi−invariant Gibbs measure for uniform activities,
    multiple simple semi−invariant Gibbs measures for all non−uniform
    activities, non−semi−invariant Gibbs measures for all activities

11

10

unique Gibbs measure for uniform activities (proven)

unique Gibbs measure for uniform activities (conjectured), multiple simple
     semi−invariant Gibbs measures for some non−uniform activities

Figure 3: Simple semi-invariant, and general, Gibbs measures for q-coloring the r-branching Cayley
tree
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