On the coherence of some irrational transfer function classes

Amol Sasane
Department of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE, United Kingdom.
E-mail:A.J.Sasane@lse.ac.uk
CDAM Research Report CDAM-LSE-2005-16

November, 2005

Abstract

Let \mathbb{D}, \mathbb{T} denote the unit disc and unit circle, respectively, in \mathbb{C}, with center 0 . If $S \subset \mathbb{T}$, then let A_{S} denote the set of complex-valued functions defined on $\mathbb{D} \cup S$ that are analytic in \mathbb{D}, and continuous and bounded on $\mathbb{D} \cup S$. Then A_{S} is a ring with pointwise addition and multiplication. We prove that if the intersection of S with the set of limit points of S is not empty, then the ring A_{S} is not coherent.

Keywords: transfer function classes, infinite-dimensional systems, coherent rings, stabilization

1 Introduction

In this paper, we investigate the coherence of some rings of analytic functions. We first recall the notion of coherence.

Definition. Let R be a commutative ring with identity element e, and let $R^{n}=R \times \cdots \times R$ (n times). Let $f=\left(f_{1}, \ldots, f_{n}\right) \in R^{n}$. An element $\left(g_{1}, \ldots, g_{n}\right) \in R^{n}$ is called a relation on f if $g_{1} f_{1}+\cdots+g_{n} f_{n}=0$. The set of all relations on $f \in R^{n}$, denoted by f^{\perp}, is a R-submodule of the R-module R^{n}. The ring R is called coherent if for each $f \in R^{n}$, f^{\perp} is finitely generated, that is, there exists a $d \in \mathbb{N}$ and there exist $g_{j} \in f^{\perp}, j \in\{1, \ldots, d\}$, such that for all $g \in f^{\perp}$, there exist $r_{j} \in R, j \in\{1, \ldots, d\}$ such that $g=r_{1} g_{1}+\cdots+r_{d} g_{d}$.

In [3], McVoy and Rubel showed that while H^{∞} is coherent, the disk algebra A is not coherent. In this paper, we prove the noncoherence of some rings that lie between A and H^{∞}. The rings that we consider are introduced below:

Definition. Let the open unit disk $\{z \in \mathbb{C}||z|<1\}$ be denoted by \mathbb{D}, and the unit circle $\{z \in \mathbb{C}||z|=1\}$ be denoted by \mathbb{T}. If S be a subset of \mathbb{T}, then

$$
A_{S}=\{f: \mathbb{D} \cup S \rightarrow \mathbb{C} \mid f \text { is analytic in } \mathbb{D} \text { and } f \text { is continuous and bounded on } \mathbb{D} \cup S\}
$$

with pointwise addition and multiplication: if $f, g \in A_{S}$, then

$$
(f+g)(z)=f(z)+g(z) \quad \text { and } \quad(f \cdot g)(z)=f(z) g(z), \quad \text { for all } z \in \mathbb{D} \cup S
$$

Equipped with the supremum norm,

$$
\|f\|_{\infty}=\sup _{z \in \mathbb{D} \cup S}|f(z)| \quad \text { for } f \in A_{S}
$$

the ring A_{S} forms a Banach algebra. We note that if $S=\mathbb{T}$, then $A_{\mathbb{T}}$ is the usual disk algebra A, while if $S=\emptyset$, then one obtains the Hardy space H^{∞}.

The spaces A_{S} considered here have been studied earlier (see for instance [1], where among other things, it was shown that the corona theorem holds for A_{S}). These classes are also of interest in control theory, where they form natural families of irrational transfer functions (see [7], where it was shown that A_{S} is a Hermite domain, although not a Bézout domain, and the stable rank and topological stable rank of A_{S} are 1 and 2 , respectively, and the consequences of these properties in control theory were elaborated).

In this note, we study the coherence of the rings A_{S}. The relevance of the coherence property in control theory can be found in [4], [5].

Following the ideas of McVoy and Rubel from [3], used for proving the noncoherence of A, we show that if S is a subset of the unit circle such that the intersection of S with the set of limit points of S is not empty $(S \cap(\bar{S} \backslash S) \neq \emptyset)$, then A_{S} is not coherent. If $S=\emptyset$, then $S \cap(\bar{S} \backslash S)=\emptyset$, and $A_{S}=H^{\infty}$: in [3], it is shown that H^{∞} is coherent. In the case when S is not empty, and $S \cap(\bar{S} \backslash S)=\emptyset$, I do not know if A_{S} is coherent or not, and this is an open problem.

2 Non-coherence of A_{S} for infinite S

In this section we prove the following.
Theorem 2.1 If S is a subset of \mathbb{T} such that the intersection of S with the set of limit points of S is not empty, then the ring A_{S} is not coherent.

Proof Let z_{0} be a limit point of S that belongs to S, and let $\left(z_{n}\right)_{n \in \mathbb{N}}$ be any sequence in $S \backslash\left\{z_{0}\right\}$ with distinct terms, and with limit z_{0} :

$$
\left.\begin{array}{c}
\forall n \in \mathbb{N}, \quad z_{n} \in S \backslash\left\{z_{0}\right\} \\
\forall m, n \in \mathbb{N}, \quad z_{m} \neq z_{n} \tag{1}\\
\lim _{n \rightarrow \infty} z_{n}=z_{0} \in S
\end{array}\right\}
$$

Let B_{1} be the Blaschke product

$$
\begin{equation*}
B_{1}(z)=\prod_{n=1}^{\infty} \frac{\left|\alpha_{n}\right|}{\alpha_{n}} \frac{\alpha_{n}-z}{1-\alpha_{n}^{*} z}, \quad z \in \mathbb{D} \tag{2}
\end{equation*}
$$

where

$$
\alpha_{n}=\left(1-\frac{1}{(n+1)^{2}}\right) z_{0}, \quad n \in \mathbb{N}
$$

Let B_{2} be the Blaschke product

$$
\begin{equation*}
B_{2}(z)=\prod_{n=1}^{\infty} \frac{\left|\beta_{n}\right|}{\beta_{n}} \frac{\beta_{n}-z}{1-\beta_{n}^{*} z}, \quad z \in \mathbb{D} \tag{3}
\end{equation*}
$$

where

$$
\beta_{n}=\left(1-\frac{1}{\sqrt{2}(n+1)^{2}}\right) z_{0}, \quad n \in \mathbb{N} .
$$

If $m, n \in \mathbb{N}$, then $\alpha_{m} \neq \beta_{n}$, as otherwise

$$
\sqrt{2}=\frac{(m+1)^{2}}{(n+1)^{2}} \in \mathbb{Q}
$$

a contradiction. We also observe that $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ and $\left(\beta_{n}\right)_{n \in \mathbb{N}}$ are convergent with the same limit z_{0}. The functions B_{1}, B_{2} are analytic in an open set Ω containing $\overline{\mathbb{D}} \backslash\left\{z_{0}\right\}$, and the infinite products converge uniformly on compact subsets contained in Ω (see for instance Exercise 12 on page 317 of [6]).

Define $f_{i}: \overline{\mathbb{D}} \rightarrow \mathbb{C}, i \in\{1,2\}$, as follows:

$$
f_{i}(z)=\left\{\begin{array}{cl}
\left(z-z_{0}\right) B_{i}(z) & \text { if } z \in \overline{\mathbb{D}} \backslash\left\{z_{0}\right\} \tag{4}\\
0 & \text { if } z=z_{0}
\end{array}\right.
$$

Then $f_{1}, f_{2} \in A$.
Lemma 2.2 Let S be an infinite subset of \mathbb{T}, and let $\left(z_{n}\right)_{n \in \mathbb{N}}$ be a sequence as in (1). Suppose that $f_{i}, i \in\{1,2\}$ are defined by (4). If $g_{1}, g_{2} \in A_{S}$ are such that for all $z \in \mathbb{D} \cup S$, $g_{1}(z) f_{1}(z)+g_{2}(z) f_{2}(z)=0$, then

$$
\lim _{n \rightarrow \infty}\left|g_{1}\left(z_{n}\right)\right|=0=\lim _{n \rightarrow \infty}\left|g_{2}\left(z_{n}\right)\right|
$$

Proof For all $z \in \mathbb{D}$, we have $\left|g_{1}(z)\right|\left|z-z_{0}\right|\left|B_{1}(z)\right|=\left|g_{2}(z)\right|\left|z-z_{0}\right|\left|B_{2}(z)\right|$, and in particular, $\left|g_{1}\left(\beta_{n}\right)\right|\left|\beta_{n}-z_{0}\right|\left|B_{1}\left(\beta_{n}\right)\right|=0$. As $B_{1}\left(\beta_{n}\right) \neq 0$ and $\left|\beta_{n}-z_{0}\right| \neq 0$, it follows that $g_{1}\left(\beta_{n}\right)=0$. Since $g_{1} \in A_{S}$, we obtain

$$
g_{1}\left(z_{0}\right)=g_{1}\left(\lim _{n \rightarrow \infty} \beta_{n}\right)=\lim _{n \rightarrow \infty} g_{1}\left(\beta_{n}\right)=0
$$

Hence

$$
\lim _{n \rightarrow \infty} g_{1}\left(z_{n}\right)=g_{1}\left(\lim _{n \rightarrow \infty} z_{n}\right)=g_{1}\left(z_{0}\right)=0
$$

Similarly, we also obtain that $\lim _{n \rightarrow \infty} g_{2}\left(z_{n}\right)=0$.
We shall prove that the module of relations on $\left(f_{1}, f_{2}\right)$ is not finitely generated. Assume, on the contrary, that the module of relations on $\left(f_{1}, f_{2}\right)$ is generated by $\left(g_{j, 1}, g_{j, 2}\right), j \in$ $\{1, \ldots, d\}$. From Lemma 2.2, it follows that for all $i \in\{1,2\}$ and all $j \in\{1, \ldots, d\}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g_{j, i}\left(z_{n}\right)=0 \tag{5}
\end{equation*}
$$

Let K denote the compact set defined as follows: $K=\left\{z_{n} \mid n \in \mathbb{N}\right\} \cup\left\{z_{0}\right\}$. Define the function $\varphi: \mathbb{D} \cup S \rightarrow \mathbb{C}$ by

$$
\varphi(z)=\left\{\begin{array}{cl}
\left(\max \left\{\left|z-z_{0}\right|,\left|g_{1,1}(z)\right|, \ldots,\left|g_{d, 1}(z)\right|,\left|g_{1,2}(z)\right|, \ldots,\left|g_{d, 2}(z)\right|\right\}\right)^{\frac{1}{2}} & \text { if } z \neq z_{0} \\
0 & \text { if } z=z_{0}
\end{array}\right.
$$

Then it can be seen that the restriction of φ to K is a continuous function on K. Also, we note that

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad \varphi\left(z_{n}\right) \geq\left|z_{n}-z_{0}\right|>0 \tag{6}
\end{equation*}
$$

and moreover, using (5), it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varphi\left(z_{n}\right)=0 \tag{7}
\end{equation*}
$$

K is a closed set of Lebesgue measure 0 on the unit circle, and $\varphi: K \rightarrow \mathbb{C}$ is a continuous function on K. We now recall the following result (see for instance the theorem on page 81 of [2])

Theorem 2.3 (Rudin) Let K be a closed set of Lebesgue measure zero on the unit circle, and let F be any continuous complex-valued function on K. Then there exists a function in the disk algebra A whose restriction to K is F.

An application of this theorem yields the existence of a function $\Phi \in A$ whose restriction to K is φ. Observe that

$$
\Phi\left(z_{0}\right)=\lim _{n \rightarrow \infty} \Phi\left(z_{n}\right)=\lim _{n \rightarrow \infty} \varphi\left(z_{n}\right)=0
$$

by (7). Define $\Gamma_{i}: \mathbb{D} \cup S \rightarrow \mathbb{C}, i \in\{1,2\}$ as follows:

$$
\Gamma_{i}(z)=\left\{\begin{array}{cl}
\Phi(z) B_{i}(z) & \text { if } z \neq z_{0} \\
0 & \text { if } z=z_{0}
\end{array}\right.
$$

Then we claim that $\Gamma_{1}, \Gamma_{2} \in A_{S}$, and this can be seen as follows:
Let $i \in\{1,2\}$. As Φ and B_{i} are analytic in \mathbb{D}, it follows that Γ_{i} is also analytic in \mathbb{D}.

If $z \in \mathbb{D} \cup S$, then $|\Phi(z)| \leq\|\Phi\|_{\infty}<+\infty$. If $z \in \mathbb{D}$, then $\left|B_{i}(z)\right| \leq 1$. If $z \in S \backslash\left\{z_{0}\right\}$, then each factor in the partial product of (2) or (3) has modulus 1 , and using the (uniform) convergence of B_{i} on compact subsets contained in Ω, it follows that $\left|B_{i}(z)\right|=1$ for all $z \in S \backslash\left\{z_{0}\right\}$. Consequently Γ_{i} is bounded on $\mathbb{D} \cup S$.

Finally, continuity of Γ_{i} on $(\mathbb{D} \cup S) \backslash\left\{z_{0}\right\}$ follows from the continuity of B_{i} and that of Φ on $(\mathbb{D} \cup S) \backslash\{0\}$. We now prove continuity at z_{0}. Given $\epsilon>0$, let $\delta>0$ be such that for all $z \in \mathbb{D} \cup S$ satisfying $\left|z-z_{0}\right|<\delta$, there holds that $\left|\Phi(z)-\Phi\left(z_{0}\right)\right|<\epsilon$. Then for all z in $(\mathbb{D} \cup S) \backslash\left\{z_{0}\right\}$, we have
$\left|\Gamma_{i}(z)-\Gamma_{i}\left(z_{0}\right)\right|=\left|\Gamma_{i}(z)-0\right|=\left|\Phi(z) B_{i}(z)\right|=|\Phi(z)|\left|B_{i}(z)\right| \leq|\Phi(z)|=|\Phi(z)-0|=\left|\Phi(z)-\Phi\left(z_{0}\right)\right|<\epsilon$.
So we conclude that $\Gamma_{1}, \Gamma_{2} \in A_{S}$.
Let $g_{1}:=\Gamma_{2}$ and $g_{2}:=-\Gamma_{1}$. Then $\left(g_{1}, g_{2}\right)$ is a relation on $\left(f_{1}, f_{2}\right)$. Indeed, if $z \in(\mathbb{D} \cup S) \backslash$ $\left\{z_{0}\right\}$, then $g_{1}(z) f_{1}(z)+g_{2}(z) f_{2}(z)=\Phi(z) B_{2}(z)\left(z-z_{0}\right) B_{1}(z)-\Phi(z) B_{1}(z)\left(z-z_{0}\right) B_{2}(z)=0$. If $z=z_{0}$, then $g_{1}(z) f_{1}(z)+g_{2}(z) f_{2}(z)=0 \cdot 0+0 \cdot 0=0$.

However, we now show that there cannot exist functions h_{1}, \ldots, h_{d} in A_{S} such that

$$
\begin{equation*}
h_{1}\left(g_{1,1}, g_{1,2}\right)+\cdots+h_{d}\left(g_{1, d}, g_{2, d}\right)=\left(g_{1}, g_{2}\right) . \tag{8}
\end{equation*}
$$

If (8) holds for some h_{1}, \ldots, h_{d} in A_{S}, then for all $n \in \mathbb{N}$,

$$
h_{1}\left(z_{n}\right) g_{1,1}\left(z_{n}\right)+\cdots+h_{d}\left(z_{n}\right) g_{d, 1}\left(z_{n}\right)=g_{1}\left(z_{n}\right)=\Gamma_{2}\left(z_{n}\right)=\Phi\left(z_{n}\right) B_{2}\left(z_{n}\right)=\varphi\left(z_{n}\right) B_{2}\left(z_{n}\right) .
$$

Hence for all $n \in \mathbb{N}$, we have

$$
\begin{aligned}
\left|\varphi\left(z_{n}\right)\right| & =\left|\varphi\left(z_{n}\right) B_{2}\left(z_{n}\right)\right| \leq\left|h_{1}\left(z_{n}\right)\right|\left|g_{1,1}\left(z_{n}\right)\right|+\cdots+\left|h_{d}\left(z_{n}\right)\right|\left|g_{d, 1}\left(z_{n}\right)\right| \\
& \leq d \cdot \max \left\{\left\|h_{1}\right\|_{\infty}, \ldots,\left\|h_{d}\right\|_{\infty}\right\} \cdot \max \left\{\left|g_{1,1}\left(z_{n}\right)\right|, \ldots,\left|g_{d, 1}\left(z_{n}\right)\right|\right\} \\
& \leq M \cdot \max \left\{\left|z_{n}-z_{0}\right|,\left|g_{1,1}\left(z_{n}\right)\right|, \ldots,\left|g_{d, 1}\left(z_{n}\right)\right|,\left|g_{1,2}\left(z_{n}\right)\right|, \ldots,\left|g_{d, 2}\left(z_{n}\right)\right|\right\} \\
& =M \cdot\left|\varphi\left(z_{n}\right)\right|^{2},
\end{aligned}
$$

where $M:=d \cdot \max \left\{\left\|h_{1}\right\|_{\infty}, \ldots,\left\|h_{d}\right\|_{\infty}\right\}$. Consequently, using (6), we have

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad 1 \leq M\left|\varphi\left(z_{n}\right)\right| \tag{9}
\end{equation*}
$$

But from (7), the right hand side of (9) tends to 0 as $n \rightarrow \infty$, and so we arrive at the contradiction that $1 \leq 0$. This completes the proof.

References

[1] J. Détraz. Étude du spectre d'algèbres de fonctions analytiques sur le disque unité. (French) Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences. Séries A et B, 269:A833-A835, 1969.
[2] K. Hoffmann. Banach Spaces of Analytic Functions. Dover, 1988.
[3] W.S. McVoy and L.A. Rubel. Coherence of some rings of functions. Journal of Functional Analysis, 21:76-87, 1976.
[4] A. Quadrat. The fractional representation approach to synthesis problems: an algebraic analysis viewpoint. Part I: (Weakly) doubly coprime factorizations. SIAM Journal on Control and Optimization, 42:266-299, 2004.
[5] A. Quadrat. The fractional representation approach to synthesis problems: an algebraic analysis viewpoint. Part II: Internal Stabilization. SIAM Journal on Control and Optimization, 42:300-320, 2004.
[6] W. Rudin. Real and Complex Analysis. 3rd Edition, McGraw-Hill, 1987.
[7] A.J. Sasane. Irrational transfer function classes, coprime factorization and stabilization. CDAM Research Report CDAM-LSE-2005-10, May 2005. Available electronically at http://www.cdam.lse.ac.uk/Reports/Files/cdam-2005-10.pdf

