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Abstract

Bollobás, Brightwell and Leader [2] showed that there are at most 2(
n

2)+o(n2) 2-SAT
functions on n variables, and conjectured that in fact almost every 2-SAT function is
unate: i.e., has a 2-SAT formula in which no variable’s positive and negative literals
both appear. We prove their conjecture, finding the number of 2-SAT functions on n

variables to be 2(
n
2)+n(1 + o(1)).

As a corollary of this, we also find the average number of satisfying assignments of a
2-SAT function on n variables. We also find the next largest class of 2-SAT functions,
and show that if k = k(n) is any function with k(n) < n

1
4 for all sufficiently large

n, then the class of 2-SAT functions on n variables which cannot be made unate by

removing 25k variables is smaller than 2(
n

2)+n−kn for all sufficiently large n.

1 Introduction

Given a collection of n Boolean variables x1, . . . , xn, a satisfying assignment for a Boolean
function S on the n variables is an assignment of True/False to each variable such that
S(x1, . . . , xn) is True. A Boolean function is defined by its set of satisfying assignments.

Associated with a Boolean variable x is a positive literal x and a negative literal x. The
positive literal is True exactly when the variable is True; the negative literal is True exactly
when the variable is False.
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A k-clause is a collection of k literals, no two of which are associated with the same
variable. A k-clause is satisfied if and only if at least one of its literals is True. A k-SAT

formula is a collection of k-clauses, and the formula is satisfied if and only if all of its k-
clauses are satisfied. A Boolean function SF whose satisfying assignments are exactly those
which satisfy a k-SAT formula F is called a k-SAT function.

The aim of this paper is to asymptotically enumerate the 2-SAT functions on n variables.

We call a 2-SAT formula monotone if all of its clauses contain only positive literals, and
a 2-SAT function is called monotone if it is given by a monotone formula.

Given a 2-SAT formula F on n variables, and a subset R of those variables, we can define
a 2-SAT formula by replacing each positive literal associated to a variable in R with the
corresponding negative literal, and each negative literal associated to a variable in R with
the corresponding positive literal, in every clause of F . We call this process relabelling the

literals, and say R is the set of variables that were relabelled. If S is a 2-SAT function, then
the same relabelling of the variables R on any formula F which gives rise to S gives rise to
the same 2-SAT function, so we can say this is the 2-SAT function obtained by relabelling
the variables R. Its satisfying assignments are precisely the satisfying assignments of S with
the values of the variables in R reversed.

We say that any 2-SAT function which is the result of relabelling some variables on a
monotone function is unate.

Let G(n) be the number of 2-SAT functions on n variables. We will see that there are

2(n

2) monotone 2-SAT functions, and asymptotically 2(
n

2)+n unate 2-SAT functions, so that
certainly G(n) grows at at least this rate.

Bollobás, Brightwell and Leader [2] prove that G(n) = 2(n

2)+o(n2), and conjecture that in
fact almost every 2-SAT function is unate. We modify and expand on their argument to
obtain a proof of their conjecture.

Theorem 1.1. For all sufficiently large n,
(

1 − 2−
3n
4

)

2(n

2)+n < G(n) < 2(n

2)+n
(

1 + 2−
n
25

)

,

and almost every 2-SAT function is unate.

The proof of this theorem constitutes the bulk of this paper (Sections 1–7). In Section 8
we prove some refinements as follows.

We will find as a consequence of the proof of Theorem 1.1 the following.

Theorem 1.2. For sufficiently large n, the average number of satisfying assignments of a

2-SAT function on n variables is

(1 + o(1))

5
√

n
∑

k=0

(

n

k

)

2−(k
2) = 2( 1

2
+o(1)) log2 n ,

which is asymptotically equal to the average number of independent sets in a graph on n
points.
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We are able to prove even more, identifying the next largest class of 2-SAT functions.

Theorem 1.3. For all sufficiently large n,

2(n
2)+n

(

1 +

(

n

2

)(

3

4

)n−2

− 2−
n
2

)

< G(n) < 2(n
2)+n

(

1 +

(

n

2

)(

3

4

)n−2

+ 2−
418n
1000

)

.

It is well known that almost every triangle-free graph is bipartite (see Erdős, Kleitman and
Rothschild [5]). Prömel, Schickinger and Steger [8] have shown that almost every triangle-
free graph which is not bipartite can be made bipartite by removing just one vertex; this
theorem gives the equivalent result for our problem. They showed further that almost every
triangle-free graph which is not bipartite and cannot be made so by removing one vertex can
be made bipartite by removing two vertices, and so on. We will establish an upper bound of

2(n

2)+n−kn on the number of 2-SAT functions which cannot be made unate by removing 25k
variables, where k = k(n) < n

1
4 , which is a first step towards proving the equivalent result

for our problem.

Suppose S1, S2 arise from the monotone 2-SAT formulae F1, F2. Suppose that there is a
clause (a1, a2) in F1 which is not in F2. Then the assignment of True to every variable except
for those associated to literals a1, a2, which are assigned False, is not a satisfying assignment
for S1, but it is for S2. Hence two different monotone 2-SAT formulae always give rise to
different monotone 2-SAT functions.

Observe that if F is a 2-SAT formula but not monotone, then there is a clause in it
with strictly less than two positive literals. Then we can assign True to every variable not
associated to a literal in that clause, and to the variables associated to literals in that clause
we assign whichever of True or False makes the clause not satisfied. This is an assignment
in which strictly more than n − 2 variables are assigned True. Hence any clause with no
negative literals must be satisfied, so it is a satisfying assignment for all monotone 2-SAT
functions. It follows that a monotone 2-SAT function arises from exactly one 2-SAT formula,

so there are exactly 2(n

2) monotone 2-SAT functions on n variables.

If S is a unate function and F is a formula for S, then relabelling the same variables
on F that were relabelled to obtain S from a monotone function must result in a monotone
formula, so that S has a unique formula and there are as many unate 2-SAT functions as there
are distinct relabellings of monotone 2-SAT formulae. Since two relabellings of a monotone
formula F are distinct unless the relabellings differ only on variables whose positive literals
do not appear in F , certainly all relabellings of monotone formulae which mention all positive
literals are distinct, and a lower bound for the number of unate 2-SAT functions is:

2n
(

2(n

2) − n2(n−1
2 )
)

= 2(n

2)+n
(

1 − 2−(n−1
1 )+log n

)

= 2(n

2)+n
(

1 − 2−n+log n+1
)

.

In this paper all logarithms will be taken to base 2.

We certainly have:
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G(n) ≥ 2(n
2)+n

(

1 − 2−
3n
4

)

,

for sufficiently large n, and we aim to prove an upper bound to match this.

Bollobás, Brightwell and Leader [2] observe that G(n) can also be interpreted as the
number of subsets of the n-cube that are the union of subcubes of codimension 2.

2 Preliminaries

In this section, we reduce the problem to that of counting a class of 2-SAT functions with
extra properties. This entire section is essentially identical to the equivalent part of [2],
repeated here for convenience.

The 2-SAT function with no satisfying assignment is called the trivial function.

Given a 2-SAT function, define its spine to be the set of literals which are true in all
satisfying assignments; obviously any non-trivial function cannot have both x and x in its
spine; we will refer to the variable x being in the spine of the function.

Suppose that for some pair of literals u, v, in every satisfying assignment u ⇐⇒ v.
Then we say that the literals are associated ; clearly u, v are associated if and only if u, v are
associated. Then we can say that the corresponding variables are associated, and trivially
this is an equivalence relation.

We call a 2-SAT function elementary if it has no variables in its spine and no associated
pairs of variables. Let there be H(n) elementary 2-SAT functions on n variables.

Given any non-trivial 2-SAT function S on n variables, we can reduce it to an elementary
2-SAT function by ignoring all variables in the spine of S and all but the lowest numbered
in each equivalence class of associated variables, then compressing the labels to obtain an
elementary function on n− l variables (l ≥ 0). This reduction is at worst

(

n

l

)

(2n−2l+2)l-to-
1, since for each of the l variables removed (

(

n

l

)

choices of label) we can choose to associate
its positive literal to any of the 2n − 2l remaining literals, or to put either its positive or
negative literal in the spine. Thus

H(n) ≤ G(n) ≤ 1 +
n
∑

l=0

H(n − l)

(

n

l

)

(2n − 2l + 2)l

where the 1 is counting the trivial function.

Since every unate function is certainly elementary, we have 2(n
2)−

3n
4 < H(n). H(n) is

obviously monotone increasing, and we will prove that H(n) < 2(n

2)+n
(

1 + 2−
n
24

)

for all
sufficiently large n. This will be enough to prove Theorem 1.1.

Proof. Let N be sufficiently large that for all n ≥ N , H(n) < 2(n

2)+n
(

1 + 2−
n
24

)

.
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Then we have

G(n) < 1 +

n−N
∑

l=0

H(n − l)

(

n

l

)

(2n − 2l + 2)l +

n
∑

l=n−N+1

H(N)

(

n

l

)

(2n − 2l + 2)l

<

n−N
∑

l=0

2(n−l
2 )+n−l

(

1 + 2−
n−l
24

)

(

n

l

)

(2n − 2l + 2)l + NH(N)2n(2n)n

< 2(n

2)+n

(

1 + 2−
n
24 +

n−N
∑

l=1

(

n

l

)

(2n − 2l + 2)l(1 + 2−N)2(n−l

2 )+l−(n

2)

)

+ NH(N)2n+2n log n

< 2(n

2)+n
(

1 + 2−
n
25

)

for sufficiently large n.

We define a bijection between the elementary 2-SAT functions on n variables and a par-
ticular class of partial orders on 2n points: given any formula F giving rise to an elementary
2-SAT function SF , let P1(F ) be the relation on the 2n points {x1, . . . , xn, x1, . . . , xn} given
by a < b if the clause (a, b) appears in F .

Suppose that there were a sequence a1 < a2 < . . . < ar < a1 in P1(F ). Suppose we have
a satisfying assignment for SF with a1 True. Then as (a1, a2) must contain a True literal,
a2 is also True in any such assignment. Suppose we have a satisfying assignment for SF

with a1 False. Then as (ar, a1) must contain a True literal, ar must also be False, and by
induction ai must be False for each 1 ≤ i ≤ r in any such assignment. But then a1 and
a2 are associated, contradicting SF being elementary. So no such sequence exists. Then let
P (F ) be the transitive closure of P1(F ); we see that this is a partial order.

The relation P (F ) must satisfy u < v ⇐⇒ v < u, since a sequence of clauses giving the
first relation also gives the second. It cannot have u < u for any u, since if u is False in a
satisfying assignment for SF , the sequence of clauses certifying u < u certify u True, which
is a contradiction, so that u is in the spine of SF .

A satisfying assignment for SF is an up-set in P (F ) containing exactly one of each pair of
literals. Furthermore, suppose u 6< v in P (F ), then let U be the smallest up-set containing
both u and v; there is no x with u < x and v < x, as this implies x < v so u < v, so that U
contains at most one of each pair of literals. There is no y with y < v, y < v, for this implies
v < y < v. So we can add in to U one literal at a time to obtain an up-set containing exactly
one of each pair of literals, which is a satisfying assignment for SF with u and v true. Thus
u < v in P (F ) if and only if u =⇒ v is True in every satisfying assignment for SF . So
P (F ) depends only on the function SF and not on the specific formula F giving SF , and the
satisfying assignments of SF can be found given P (F ). Thus there is a 1-1 correspondence
between elementary 2-SAT functions on n variables {x1, . . . , xn} and partial orders on 2n
points {x1, . . . , xn, x1, . . . , xn} such that u < v ⇐⇒ v < u and there is no u with u < u.
We will write P (S) for the partial order corresponding to the elementary function S.
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3 Reduction to diagrams

At this point we depart from the method of proof in [2]; we develop a line-and-arrow repre-
sentation, which turns out to be more amenable to detailed analysis than the coloured graph
representation studied in [2].

The trivial function is not elementary, so that every elementary function must have
a satisfying assignment. For each elementary 2-SAT function S, pick an elementary 2-SAT
function M(S) obtained by relabelling the literals such that x1, . . . , xn all True is a satisfying
assignment of M(S). Since there are only 2n ways to relabel the literals, the restriction of M
to the elementary 2-SAT functions on n variables is at worst 2n-to-1. Observe that whatever
elementary S was chosen, P (M(S)) cannot have xi < xj for any i, j, as this is equivalent to
xi =⇒ xj in every satisfying assignment of M(S), contradicting all True being a satisfying
assignment. Furthermore, M(S) is unate if and only if S is unate.

Call a 2-SAT function nonnegative if it is elementary and all True is a satisfying assign-
ment. Then M maps from the class of elementary 2-SAT functions to the nonnegative 2-SAT
functions.

Given a nonnegative 2-SAT function S on n variables {x1, . . . , xn}, we construct a diagram

D(S), which will be a graph on n points {x1, . . . , xn} in which some edges are directed (which
we call arrows) and some are not (which we call lines). The directed edges will form a partial
order, the partial order within D, and we will use equivalently ‘a < b’ and ‘there is an arrow
from a to b’. We do this as follows. First take P (S), the partial order on 2n points associated
with S. Then whenever xi < xj in P (S), we put xi < xj in D(S). Whenever xi < xj is a
covering relation in P (S) we put a line xixj in D(S). Observe that if xi < xj so also xj < xi,
and that given D(S) we can certainly recover P (S) and hence S.

Observe that, in D(S), no pair of points a and b are joined by both a line and an arrow:
ab and a < b. For this would imply that in P (S) we had b < a < b. We also cannot find
each of the following forbidden structures, shown in Figure 1:

(1) a, b, c such that b < a, c < a and there is a line bc.

(2) a, b, c such that a < b and there are lines ac, bc.

(3) a, b, c, d such that a < b, c < d and there are lines ac, bd.

a

(3)

ca

db

(2)

c

b

a

(1)

cb

Figure 1: Forbidden structures

For if (1) existed, then in P (S), a < b < c < a. If (2) existed, then in P (S), c < a < b
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so that c < b cannot be a covering relation. If (3) existed, then in P (S), b < a < c < d and
b < d cannot be a covering relation.

A valid diagram is any diagram in which no two points are joined by both an arrow and
a line, and which does not contain any of the three forbidden structures. Then certainly the
set of valid diagrams on n points contains the set of all diagrams D(S) for S a nonnegative
2-SAT function on n variables, and in fact it is not hard to see that every valid diagram D
is D(S) for some nonnegative 2-SAT function S.

We will bound both the number F (n) of valid diagrams on n points and the number of
valid diagrams on n points not corresponding to unate functions. This latter bound will be
small enough to give our result.

At this point it is worth observing that a monotone 2-SAT function is always a non-
negative function; it will correspond to a diagram in which there are no arrows, only lines
between points. A unate 2-SAT function, by contrast, is not usually nonnegative: we get
a unate function by relabelling the literals on a monotone function, and the result is only
nonnegative if there were no clauses consisting of any two of the relabelled literals. So we
expect to find that M is in some sense ‘nearly’ 2n-to-1 on the set of unate 2-SAT functions on
n variables, and we expect to find that most unate nonnegative 2-SAT functions correspond
to diagrams in which there is a large set of points within which no arrows are found, a small
set of points within which no lines or arrows are found, and between the small and large set
no lines are found and no arrows go from the large set to the small set. In fact, we will find

that there are a factor of 2(
1
2
+o(1)) log2 n ‘too many’ valid diagrams, but this is acceptable since

the number of valid diagrams corresponding to non-unate 2-SAT functions is exponentially
smaller than the number of those that correspond to unate 2-SAT functions, and we already
have an accurate count of the unate 2-SAT functions.

In the rest of this paper, all diagrams will consist of a top set T , containing all points
which are maximal in the partial order within the diagram, and a bottom set B, all other
points (see Figure 2).

Note that there are no arrows within T , and that every member of B is below at least
one point of T .

T

BB

T

Figure 2: A general valid diagram and a diagram arising from a unate 2-SAT function

We will at times want to say that between a and b in a diagram there is no line or arrow
in either direction, when we will simply say that there is nothing between a and b; we will
also sometimes want to say that there is either a line or an arrow in one or the other direction
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between a and b, when we will say there is something between a and b.

Lemma 3.1. A valid diagram corresponds to a nonnegative unate 2-SAT function if and

only if there are no lines between its top and bottom sets, and no lines or arrows within its

bottom set.

Proof. If S is a nonnegative unate 2-SAT function, then let R be a minimal set of variables
such that relabelling the variables R on S gives a monotone function. If a is a point in D(S),
and a /∈ R, then there certainly is no clause (a, b) in the 2-SAT formula for S, and so a
cannot be below any other point in D, i.e. a ∈ T . If on the other hand a ∈ R, then the
clause (a, b) must appear in the formula for S (since R is minimal) and a ∈ B. If there is
a line tb in D, with t ∈ T, b ∈ B, then the clause (t, b) is in the formula for S, so that b, b
are both mentioned in the formula, which is impossible since S is unate. Similarly, if a < b
or ab is in D, with a, b ∈ B, then b, b are in the formula for S which is impossible. Hence
D(S) is of the required form. Now suppose we are given a diagram D(S) of the required
form, corresponding to the nonnegative function S. Since there is no arrow a < b with a
line ac, we see that in P (S) every relation xi < xj between positive and negative literals is
a covering relation, so relabelling the variables B on S gives an unate function.

We observe that valid diagrams corresponding to nonnegative unate 2-SAT functions are
in 1 − 1 correspondence with graphs with a specified independent set B.

Suppose that we attempt to construct a valid diagram. We first choose the set B, then
we choose where to put lines within T , then where to put lines between B and T , and where
to put arrows from B up to T . Then we can choose where to put lines and arrows within
B. But this last choice is already restricted. Suppose that we have two points a, b ∈ B.
Then either there is, or there is not, a point in T above both a and b. In the former case,
we cannot put a line ab in without creating the forbidden structure (1) and hence an invalid
diagram. In the latter case, we cannot put an arrow from a to b, for there exists x ∈ T with
b < x and hence if a < b then a < x also; by symmetry, we cannot put an arrow from b
to a either. Thus between any two points in b we have either a choice of nothing or a line
between a and b, or a choice of nothing or an arrow in one or the other direction.

We can now put a crude upper bound on the number of valid diagrams on n points:

n−1
∑

|B|=0

(

n

|B|

)

2(|T |
2 )3|T ||B|2(|B|

2 )|B|!

simply by following the above construction, noting that there are |B|! ways to order the
points in B, so that there are at most that many ways to decide the directions of any arrows
we might choose in B.

We have now reduced the problem to examining a class of combinatorial structures which
are relatively easy to handle; the rest of the paper involves developing and applying tools to
handle these structures.

Since we want to find that there are about 2(
n

2) valid diagrams, we must find a way of
dealing with the possibilities for lines and arrows between B and T , and with the requirement
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to order B. We will do this by dividing into two cases, when B is small and when it is not.
We will need only some simple approximations to deal with the first case, even though it
will turn out to be the large case. We will apply the Szemerédi Regularity Lemma followed
by an induction argument to dispose of the second case.

4 Some useful facts

The following will be used frequently to restrict choice, relying on the forbidden structure
(2) which says that if a point is comparable with one set of points and connected by lines to
another set, then there can exist no lines between these two sets.

Let V be a set of points, and I be an index set. Suppose that there exist for each i ∈ I
sets Si, Li ⊂ V , with Si ∩ Li = ∅. Call the set

⋃

i∈I

{

{a, b} : a ∈ Li, b ∈ Si

}

the forbidden set (for (Si, Li)i∈I).

Lemma 4.1. Suppose that there is a constant l such that for each i, Li ≥ l. Let S = ∪i∈ISi.

Then the forbidden set has size at least
l|S|
2

.

Proof. Observe that for each s ∈ S, at least l members of the forbidden set contain s. But
as a given member of the forbidden set can contain at most two elements of s, this counts
each member at most twice, and the forbidden set has size at least l|S|

2
.

We will usually refer to the Si as the small sets and the Li as the large sets.

When we use this, the set I will be some points in the top or bottom of a diagram,
the sets Li and Si will be points in the other layer connected to i by arrows or lines (in no
particular order), and the forbidden structure (2) will dictate that there are no lines between
pairs in the forbidden set. This places two restrictions on the available choices: firstly we
have to choose the Si within S, and secondly we will be unable to choose lines between at
least l|S|

2
pairs.

Some simple bounds will also be useful.

Whenever k ≤ n
3
, we have

∑k
i=0

(

n

i

)

< 2
(

n

k

)

, since

(

n

i

)

=
i + 1

n − i
. . .

k

n − k + 1

(

n

k

)

<

(

1

2

)k−i(
n

k

)

when i ≤ n
3
.

In [7], Kleitman and Rothschild show that the number of partial orders on n points is

asymptotically 2
n2

4
+O(n log n) (this result is sharpened and the proof simplified by Brightwell,

Prömel and Steger in [4]). Hence there exists J such that for all n > J , there are fewer than

2
3n2−5n

10 partial orders on n points. We use J for this number throughout.
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5 Counting the case we expect to be large

In this section, we discuss the case |B| ≤ n
100

. Note that we expect to find many valid dia-
grams in this case, as it covers all the diagrams corresponding to monotone 2-SAT functions
and the vast majority of those corresponding to nonnegative unate functions.

Theorem 5.1. For all sufficiently large n, there are at most 2(n
2)+log2 n valid diagrams on n

points with |B| ≤ n
100

, and at most 2(n
2)−

n
23 of these do not correspond to unate functions.

Furthermore, there are at most 2(n

2)−2n
5
4

valid diagrams on n points with 3n
19
20 < |B| ≤ n

100
.

Proof. For any valid diagram and any point x ∈ B, let Γarr(x) = {t ∈ T : t > x} be the
arrow neighbours of x. Let Γline(x) = {t ∈ T : xt is a line} be the line neighbours of x. Note
that there might be points in B connected to x by arrows or lines, but we do not include
them in these sets.

Let P ⊂ B be the set of points x ∈ B with both |Γarr(x)| < n
10

and |Γline(x)| < n
10

. Let
I = B − P .

Now for each point i ∈ I, at least one of |Γarr(x)|, |Γline(x)| is at least n
10

. We apply
Lemma 4.1, with this I, with V = T , with Li the larger of Γarr(i) and Γline(i), and with Si

the smaller. Then l ≥ n
10

, and we have S = ∪i∈ISi.

P

S T

BI

Figure 3: A typical valid diagram with |B| ≤ n
100

Let D(B, P, S) be the number of valid diagrams with sets B, P, S (see Figure 3). Then
the number of valid diagrams with |B| ≤ n

100
is

∑

|B|,|P |,|S|

(

n

|B|

)(|B|
|P |

)(|T |
|S|

)

D(B, P, S) . (1)

We will attempt to construct valid diagrams, obtaining an upper bound by counting the
number of choices at each stage, as follows:

First, we choose the sets B, P, S. Then we choose for each point in P its arrow and line

neighbours. Note that
∑

n
10
j=0

(|T |
j

)

< 2
(|T |

n
10

)

, and when n is sufficiently large,

(

2

(|T |
n
10

))2

< 4(10e)
n
5 < 2|T |2−

n
21
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which approximation will be used to bound the number of choices for lines and arrows
connecting to points in P . We choose for each point in I whether its large set is its arrow
or line neighbours, then we choose its large and small sets.

We choose where to put lines within T ; from Lemma 4.1 there is a set of size at least n|S|
20

in which we cannot choose to put lines.

We choose a total order for B, which will orient any arrows we choose to put in B. For
any pair in B(2) we can choose to put either nothing or something, but we have no choice
over whether ‘something’ is a line or an arrow one way or the other.

This gives us the following upper bound on D(B, P, S).

D(B, P, S) <

(

2

(|T |
n
10

))2|P |
2|I|2|I||T−S|3|I||S|2(|T |

2 )−n|S|
20 |B|!2(|B|

2 )

< 2(n

2)2−
|P |n
21 2−

n|S|
20

+|I||S| log 3
2 2|I||B|! (2)

Observe that since |I| ≤ |B|, so |I| log 3
2

< 7n
1000

< n
20

. Then 2−
n|S|
20

+|I||S| log 3
2 ≤ 1, so in the

sum (1) giving an upper bound on the number of diagrams, the only terms which multiply the

2(n
2) term by an amount greater than 1 are the choices for B, P , S, 2|I|, and |B|!. Together

with the sum - over at most n3 summands - this means that an upper bound for the number
of valid diagrams will be n323nD(B, P, S), taking the worst case for D(B, P, S). We split
the proof into cases, of which only the last will be large:

(i) |P | ≥ 84n
1
4 .

(ii) |P | < 84n
1
4 and |S| ≥ 100n

1
4 .

(iii) |P | < 84n
1
4 , |S| < 100n

1
4 and |B| ≥ 3n

19
20 .

(iv) |B| < 3n
19
20 and at least one of |S| > 0, |P | > 0 holds.

(v) |S| = |P | = 0, |B| < 3n
19
20 and there is a line within B.

(vi) |S| = |P | = 0, 5
√

n ≤ |B| < 3n
19
20 and there is no line within B.

(vii) |S| = |P | = 0, |B| < 5
√

n, there is no line within B and there are at least two
arrows within B.

(viii) |S| = |P | = 0, |B| < 5
√

n, there is no line within B and there is exactly one arrow
within B.

(ix) |S| = |P | = 0, |B| < 5
√

n and there are no lines or arrows within B. Following
Lemma 3.1, we see that these diagrams correspond to unate 2-SAT functions.

Case (i):

2−
|P |n
21 ≤ 2−4n

5
4 , so that using (2) we can see that

D(B, P, S) < 2(n
2)2−

|P |n
21 2|I||B|! < 2(n

2)−3 log n−3n−3n
5
4

11



for sufficiently large n, so that in this case (1) is bounded above by 2(
n
2)−3n

5
4
. △

Case(ii):

|I| log 3
2

< 7n
1000

, so 2−
n|S|
20

+|I||S| log 3
2 < 2−4n

5
4 , so that (2) gives us

D(B, P, S) < 2(n
2)−4n

5
4
2n|B|! < 2(n

2)−3 log n−3n−3n
5
4

for sufficiently large n, so that in this case (1) is bounded above by 2(
n

2)−3n
5
4
. △

Case (iii):

Since |P | < 84n
1
4 , so |I| > 2n

19
20 , and there must be either n

19
20 points in I all of whose

arrow sets are their large sets, or that many points all of whose arrow sets are their small
sets. In the first case, there are at least n

10
n

19
20 arrows going up from I to the less than n

points in T , so one of these points must be the target of at least 1
10

n
19
20 arrows. In the second

case, recall that every point in B must be below at least one point in T , so that all of the

given n
19
20 points must be below points in S, and one point in S must be above at least n

19
20

|S|
of them. Let C be a maximal set of points in B such that there is one point t ∈ T with t > c
for all c ∈ C.

Then |C| ≥ min(n
19
20

10
, n

19
20

|S| ) ≥ min(n
19
20

10
, n

19
20

100n
1
4
) = n

14
20

100
.

Now we see that within C(2), we can find no lines, since structure (1) is forbidden.
Therefore the structure within C is simply a partial order, and we recall that for |C| > J ,

there are at most 2
3|C|2−5|C|

10 partial orders on |C| points. As a result, in this case, when we
choose lines and arrows within B, we find that there are at most

2(|B|
2 )−(|C|

2 )|B|!23
|C|2−5|C|

10 = 2(|B|
2 )− |C|2

5 |B|!

possible choices.

Observe that |C|2
5

≥ n
7
5

50000
. Consider constructing a diagram in this case: given B, P , S

we choose lines and arrows from P to T , from I to T − S and to S, within T and finally
within B. We see that we have in in this case an upper bound

D(B, P, S) <

(

2

(|T |
n
10

))2|P |
2|I|2|I||T−S|3|I||S|2(|T |

2 )−n|S|
20 2(|B|

2 )− |C|2

5 |B|!

< 2(n
2)2−

n
7
5

50000 2nn! < 2(n
2)−3 log n−3n−3n

5
4

for n sufficiently large that both n
14
20

100
> J and the above approximations hold. Then in this

case (1) is bounded above by 2(n
2)−3n

5
4
. △

At this point, note that we have the required upper bound 3.2(n

2)−3n
5
4

< 2(n

2)−2n
5
4

on the
number of valid diagrams with 3n

19
20 < |B| ≤ n

100
.

12



We also observe that we now know that |B|, |S|, |P | and |I| are now all much smaller
than n, so that for all sufficiently large n, n3

(

n

|B|
)(|B|

|P |
)(|T |

|S|
)

< 2n0.9
, 2|I||B|! < 2

n
1000 , and

|I| log 3
2

< n
1000

. We will use these bounds in the following cases.

Case (iv): Applying (2) gives us the bound

D(B, P, S) < 2(n
2)2−

|P |n
21 2−

|S|n
20

+|S| n
1000 2|I||B|!

< 2(n
2)2−

|P |n
21 2−

|S|n
21 2|I||B|! < 2(n

2)−
n
22

−n0.9

for sufficiently large n, and (1) is bounded above by 2(n

2)−
n
22 for all sufficiently large n. △

Case (v):

Every point in B is below at least one point in T by definition, and since |S| = |P | = 0
every point in B is in I and has empty small set, hence every point in B has its large set its
set of arrow neighbours and has no line neighbours in T . So there are no lines between B
and T . This is of course also true for the following four cases.

There is a line ab within B; there are
(|B|

2

)

ways to choose this line. Then La and Lb both

have size at least n
10

, and do not intersect. Hence La × Lb is a set of size at least n2

100
within

T , and any line in it would cause the forbidden structure (3) to exist. So we have

D(B, P, S) <

(|B|
2

)

2|B||T |2(|T |
2 )− n2

100 2(|B|
2 )|B|! < 2(n

2)−n0.9−n
5
4

for sufficiently large n, so that in this case (1) is bounded above by 2(
n
2)−n

5
4
. △

Case (vi):

Since B contains no lines the diagram structure within B is simply a partial order. Since

|B| ≥ 5
√

n, whenever n > J2 we can say that there are at most 2
3|B|2−5|B|

10 = 2(|B|
2 )− |B|2

5 ways
to choose arrows within B. Then given B, P , S we can construct diagrams in this case by
choosing the arrows from I = B to T , the partial order within B, and the lines within T .
This gives us the bound

D(B, P, S) < 2|B||T |2(|B|
2 )− |B|2

5 2(|T |
2 ) < 2(n

2)−5n < 2(n
2)−n−n0.9

for sufficiently large n, so that in this case (1) is bounded above by 2(
n
2)−n. △

Case (vii):

There are four possibilities for the two arrows that are guaranteed to exist in B: either
a < b < c, or a < b, a < c, or a > b, a > c, or a < b, c < d. Observe that if a < b, then
Γarr(b) ⊂ Γarr(a), so that in each of these four cases we have restrictions on the choices of
arrows going from these points upwards; 4|T |, 5|T |, 5|T | and 9|T | choices, respectively. This

13



means that the choice for arrows between B and T is 2|B||T |−|T |, 2|B||T |−|T | log 8
5 , 2|B||T |−|T | log 8

5 ,
2|B||T |−|T | log 16

9 respectively; so we get

D(B, P, S) < 4.2(n

2)−|T | log 8
5 |B|! < 2(n

2)−
3n
5
−n0.9

for sufficiently large n, so that in this case (1) is bounded above by 2(
n

2)−
3n
5 . △

Case (viii):

Suppose the arrow in B is a < b. Then Γarr(b) ⊂ Γarr(a), so that there are only 3|T |

choices for the arrow neighbours of a, b in T . Then we obtain the bound

D(B, P, S) < 2

(|B|
2

)

2(|T |
2 )+(|B|−2)|T |3|T | < 2(n

2)−
7n
20

−n0.9

for sufficiently large n, so that in this case (1) is bounded above by 2(
n
2)−

7n
20 . △

Case (ix):

We bound directly the number of valid diagrams in this case: we choose B, lines within
T and arrows from B to T . This gives us the bound

∑

|B|<5
√

n

(

n

|B|

)

2(n
2)−(|B|

2 ) < 2(n
2)+

3 log2 n
4

for sufficiently large n, since the largest term in the above sum occurs when 3 log n

4
≤ |B| ≤

log n, so that the largest term is at most 2(
n
2)+log2 n− 9 log2 n

32 . △

Adding up the bounds on each case, we see that, for all sufficiently large n, Case (ix)

dominates and there are at most 2(
n
2)+log2 n valid diagrams on n points with |B| ≤ n

100
.

Adding up the bounds on Cases (i)-(viii), we see that, for all sufficiently large n, Case (iv)

dominates and there are at most 2(
n
2)−

n
23 valid diagrams on n points with |B| ≤ n

100
which

do not correspond to unate 2-SAT functions.

6 Counting the case we expect to be small

In this section, we apply (a version of) the Szemerédi Regularity Lemma to restrict the
possible partial orders, in much the same way as it is applied in [2], then use an induction
argument to show that there really are very few valid diagrams with |B| > n

100
. We will need

a theorem of Füredi.

Theorem 6.1. Let G be a graph on n vertices. Then the proper square of G, the graph G2

on V (G) with ab ∈ E(G2) if and only if ac, bc ∈ E(G) for some c, has at least |E(G)| − ⌊n
2
⌋

edges.

14



A proof of this is found in Füredi [6]; see also [2].

Lemma 6.2. When |B| > n
100

, for any fixed δ, there exists N such that for all n > N , there

are at most 2(n
2)−2n

5
4

valid diagrams containing a point x such that |{y : y < x}| > δn.

Proof. Note that if there is a point with δn points below it, then there is a point in T with
δn points below it.

There are two cases to consider:

(1) |T | < δ2

5
n.

(2) |T | ≥ δ2

5
n.

Case (1): We count the number of diagrams with |T | < δ2

5
n and a point in T having at

least δn points below it as follows. Choose a top set. Choose lines within the top set, and
arrows and lines from the top set to the bottom set such that there exists a point x in the
top set above at least δn points in the bottom set. Let C be some set of δn points below x.
Now choose arrows and lines within B(2) − C(2). Within C(2) we can choose only arrows, so
that the structure on C is simply a partial order. This gives an upper bound on the number
of diagrams in this case:

∑

|T |

(

n

|T |

)

2(|T |
2 )3|B||T |2(|B|

2 )−(δn
2 )2

3δ2n2−5δn
10 |B|!

< 2(n

2)2n2 δ2

5
log 3

2
− δ2n2

5
+n log n+n+log n

< 2(n

2)−3n
5
4

for all n sufficiently large that both the above approximations hold and δn > J .

Case (2): Since both |T | ≥ δ2

5
n, |B| ≥ 10−2n, we will be able to apply a version of the

Szemerédi Regularity Lemma to count the number of valid diagrams in this case as follows.

Given a valid diagram, draw a coloured graph G on n vertices corresponding to the points
of the diagram as follows. Whenever a point in B is below a point in T , connect them with
a red edge in the coloured graph. Whenever two points are connected by lines, or two points
in B are connected by arrows, connect them with a blue edge in the coloured graph.

Observe that if two vertices in T are connected by a blue edge, so no vertex in B is
connected to one by a red edge and to the other by a blue edge since this would be the
forbidden structure (2) (see Figure 4).

If two vertices a, b in B are connected by a blue edge, so there cannot be three vertices
in T , x, y, z, with xa, xb red edges, ya a red edge but yb not (it does not matter whether
yb is a blue edge or not an edge at all), zb a red edge but za not (again za could be a blue
edge or not an edge at all). This is because if the edge ab corresponds to a line, then a, b, x
corresponds to the forbidden structure (1), while if it corresponds to an arrow from a to b

15



there would also have to be an arrow from a to z since the partial order is transitive, and
vice versa. Since this coloured graph encodes all the information contained in the original
diagram except the choice of T and the order on B, there are at most 2nn! times as many
valid diagrams in this case as coloured graphs not containing either of these two structures.

y

ba

zx

Figure 4: Forbidden coloured subgraphs
Dotted lines are red; solid lines are blue.

Suppose 0 < ǫ < 1
1000

. If A, B ⊂ V (G), then let the red-density of the pair A, B,
dr(A, B), be the number of red edges between A and B divided by |A||B|, and define the
blue-density db(A, B) similarly. Call such a pair ǫ-uniform if for every A′ ⊂ A, B′ ⊂ B with
|A′| ≥ ǫ|A|, |B′| ≥ ǫ|B|, so |db(A, B) − db(A

′, B′)| < ǫ and |dr(A, B) − dr(A
′, B′)| < ǫ.

Let V (G) be partitioned into m sets X1, . . . , Xt, Y1, . . . , Ym−t where all the Xi are subsets
of T and all the Yi are subsets of B. Suppose that each part has size q > (1 − 2ǫ) n

m
, except

for X1 and Y1 which each have size at most ǫn. Call a pair (Xi, Yj) rich if it is ǫ-uniform,

dr(Xi, Yj) > 2ǫ
1
3 and db(Xi, Yj) > 2ǫ

1
3 . Call any pair which is not ǫ-uniform bad, and any

ǫ-uniform pair with both dr(U, V ) ≤ 2ǫ
1
3 and db(U, V ) ≤ 2ǫ

1
3 sparse. Call the remaining

pairs normal.

The following two constructions are standard arguments (see for example [2]) whose proof
we omit.

Suppose that (Xi, Xj) is a normal pair, and there exists Yk such that both (Xi, Yk) and
(Xj, Yk) are rich. Then there is a vertex y in Yk connected to a vertex a in Xi by a red edge
and to a vertex b in Xj by a blue edge, with ab a blue edge. This is the forbidden coloured
graph (α), so that if Yk is such that (Xi, Yk), (Xj , Yk) are rich pairs then (Xi, Xj) must be
either a sparse or a bad pair.

Suppose that (Yi, Yj) is a normal pair, so db(Yi, Yj) ≥ 2ǫ
1
3 , and there exists Xk such that

both (Xk, Yi), (Xk, Yj) are rich. Then we can find vertices a ∈ Yi, b ∈ Yj, x, y, z ∈ Xk forming
the forbidden coloured graph (β). Again, if Xk is such that (Xk, Yi) and (Xk, Yj) are rich
pairs, then (Yi, Yj) must be either a sparse or a bad pair.

Now draw a graph H on m vertices corresponding to the parts of V (G). Draw an edge
between two vertices in V (H) if and only if they correspond to a rich pair. Then H is
bipartite with the Xi making one part and the Yj the other. Hence the graph H2 has edges
only between vertices Xi, Xj or Yi, Yj. No edge of H2 can correspond to a normal pair in
G, so all these edges correspond to bad or sparse pairs in G. We now apply the theorem of
Füredi (as in [2]): if there are r edges in H , there are at least r −⌊m

2
⌋ edges in H2, hence at
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least that many bad or sparse pairs must be in G.

But it follows from the Szemerédi Regularity Lemma on 2-coloured graphs (proof follow-
ing the usual method as in e.g. Bollobás [1]) that in fact every 2-coloured graph has such a
partition, for some 1

ǫ
< m < K, where K depends on ǫ but not on n, with all the parts of

size q ≤ n
m

except for X1, Y1 which have size at most ǫn, and with at most ǫm2 bad pairs.

We will find that choosing ǫ small enough that 62ǫ
1
3 log e

2ǫ
1
3

+ 116ǫ < δ2

10
will work.

Consider the number of possibilities for a coloured graph not containing either of the
structures (α) or (β). We must choose T , and the parts X1, . . . , Xt, Y1, . . . , Ym−t. We must
choose which pairs are to be rich, sparse, bad and normal. We must allow 3q2

possibilities
for the edges within every rich or bad pair. We must allow 32nǫn possibilities for the edges

with one end in either X1 or Y1. We must allow 3m
q2

2 possibilities for the edges within parts.

Let η = 2ǫ
1
3 log e

2ǫ
1
3
, then within normal pairs there are at most 2q2

2
( q2

2ǫ
1
3 q2

)

< 2q2+1+ηq2

possibilities for the edges, and within sparse pairs there are at most
(

2
( q2

2ǫ
1
3 q2

)

)2

< 22+2ηq2

possibilities. There are r rich pairs, and at most ǫm2 bad pairs, hence there are s ≥ r −
ǫm2 − ⌊m

2
⌋ sparse pairs. We divide this into two cases and evaluate the number of valid

diagrams corresponding to coloured graphs in each case:

First, if r ≥ 5(3η + 11ǫ)m2.

We can count the possible graphs in this case simply by enumerating all the possibilities
to obtain an upper bound:

∑

|T |,m,r

(

n

|T |

)

mn4m2

3q2(r+ǫm2+ m
2

)+2ǫn2

2(q2+1+ηq2)(m2

2
−r−s)+(2+2ηq2)s

<
∑

|T |,m,r

2nmn4m2

(

3

4

)rq2

33ǫn2+ ǫn2

2 2(1+ηq2)(m2

2
−r−s)+ n2

2
+ǫn2+⌊m

2
⌋q2+(2+2ηq2)s

<
∑

|T |,m,r

2nmn4m2

(

3

4

)rq2

2
n2

2 33ǫn2+ ǫn2

2 2m2+ηn2+ǫn2+ ǫn2

2
+2m2+2ηn2

< nK32nKn4K2

2
n2

2 2−(3η+11ǫ)n2

23K2

2( 7
2
ǫ log 3+3η+ 3

2
ǫ)n2

< 2
n2

2 2log n+n+(n+3) log K+5K2−ǫn2

< 2(n

2)−n−n log n−3n
5
4

for all sufficiently large n.

17



It follows that for sufficiently large n, at most 2(n
2)−3n

5
4

valid diagrams give rise to these
coloured graphs.

Second, suppose r < 5(3η + 11ǫ)m2.

Here we do not count graphs directly: instead we count diagrams, using the information
we now have about the arrows and lines between B and T to obtain an upper bound. We
still need to allow for choice of T, r, m, the partition, which pairs are to be rich, sparse, bad
and normal, and choices of arrows and lines between B and T corresponding to rich, bad

and normal/sparse pairs. But now we can count the choices within T as 2(|T |
2 ), and within

B as 2(|B|
2 )−(δn

2 )2
3δ2n2−5δn

10 |B|! (since by assumption there is a point in T above δn > J points
in B). Let the number of valid diagrams on n points which correspond to coloured graphs
with less than 5(3η + 11ǫ)m2 rich pairs in a Szemerédi partition be Dg(n), then

Dg(n) <
∑

|T |,m,r

(

n

|T |

)

mn4m2

2(|T |
2 )3rq2+3ǫn2

2(q2+1+ηq2)(t−1)(m−t−1)2(|B|
2 )−(δn

2 )2
3δ2n2−5δn

10 |B|!

since there are at most (t−1)(m− t−1) pairs which are normal or sparse between B and T ,
and the given upper bound for the number of ways to choose a normal pair is also an upper
bound for the number of ways to choose a normal or sparse pair. Simplifying:

Dg(n) <
∑

|T |,m,r

2nmn4m2

2(|T |
2 )3rq2+3ǫn2

2(q2+1+ηq2)(t−1)(m−t−1)2(|B|
2 )− δ2n2

5 |B|!

< nK32nKn4K2

2(n

2)25(3η+11ǫ)n2 log 3+3ǫn2 log 3+K2+ηn2− δ2n2

5 n!

since q2(t − 1)(m − t − 1) ≤ |T ||B|, so

Dg(n) < nK32nKn23K2

2(n
2)2(31η+116ǫ)n2− δ2n2

5 n! .

< nK32nKn23K2

2(n
2)2−

δ2n2

10 n! .

Again this is less than 2(n
2)−3n

5
4

for all n sufficiently large that both the above approxi-
mations hold and δn > J .

It follows that for all sufficiently large n, there are at most 3.2(n
2)−3n

5
4

< 2(n
2)−2n

5
4

valid
diagrams with |B| > n

100
and with a point above more than δn others.

Suppose δ = 10−9. Then observe that, if n > 108, the number of partial orders where no

point has more than δn points below it is at most
(

2
(

n

δn

))n
< 2n

(

109en
n

)10−9n2

< 2
40
109

n2+n <

2
n2

2.107 . This will be all we need to prove the following theorem.
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Theorem 6.3. For all sufficiently large n, there are at most 2(n
2)−n

5
4

valid diagrams on n
points with |B| > n

100
.

Proof. Let δ = 10−9. Let N > 1060 be large enough that both the conclusion of the previous

lemma holds with δ = 10−9 and that for all k > N
2
, we have at most 2(k

2)−2k
5
4

valid diagrams

on k points with 3k
19
20 < |B| ≤ k

100
, as provided by Theorem 5.1. Let Fs(n) be the number

of valid diagrams on n points with |B| > n
100

.

Let A = Fs(N). We will prove by induction that for every n, Fs(n) < A2(n

2)−n−n
5
4
. When

n ≤ N , this is trivially true by the choice of A. Now suppose that n > N , and the induction
hypothesis holds for every k < n.

Given a valid diagram D on n points with |B| > n
100

, we can let P ⊂ T be the set of

points each of which is connected to at most |B|
200

points in B by lines. Then we can apply
Lemma 4.1, with I = T −P and V = B. For each i ∈ I, we let Si be the set of points below
i, and Li be the points in B connected to i by lines (see Figure 5). Then l ≥ |B|

200
, and by

Lemma 4.1 we have a forbidden set of size at least |B||S|
400

.

BS

I P T

Figure 5: A typical valid diagram with |B| > n
100

We consider three cases:

(a) diagrams such that there is a point above at least δn others,

(b) diagrams such that there is no point above δn others, and |S| > |B|
2

,

(c) diagrams such that there is no point above δn others, and |S| ≤ |B|
2

.

Case (a): By the previous lemma, there are at most 2(
n

2)−2n
5
4

such valid diagrams.

Case (b): We count the number of valid diagrams by choosing the partial order within
the diagram, then choosing the lines within the top set (now fixed by choice of the partial
order) and between the top and bottom sets (fixing P and S); then we choose the lines

within B, observing that there are at most
(|B|

2

)

− |B||S|
400

≤
(|B|

2

)

− |B|2
800

≤
(|B|

2

)

− n2

8.106 places
where we can choose to put lines within B, to obtain an upper bound:
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2
n2

2.107 2(|T |
2 )+|B||T |+(|B|

2 )− |B||S|
400 < 2(n

2)−
n2

2.107 < 2(n
2)−2n

5
4

since n > N > 1040.

Case (c): Since |S| ≤ |B|
2

, |B − S| ≥ |B|
2

. Every point in B − S is under some point in T ,
and no point in B−S is under any point in I, hence every point in B−S is under some point
in P . But no point in P can be above more than δn points, so that |P | ≥ |B|

2δn
> 1

200δ
. Let

P ′ ⊂ P be a set with |P ′| = 1
200δ

. Now observe that the diagram D′ on the k = n− 1
200δ

< n
points T ∪B −P ′, with a < b in D′ if and only if a < b in D, and ab a line in D′ if and only
if ab is a line in D, must be a valid diagram.

Since |B| > n
100

, and the points P ′ can be above at most |P ′|δn points of the top set of D′,

D′ must have bottom set of size at least n
100

− |P ′|δn = n
200

> k
200

. Since k
200

> 3k
19
20 , either

D′ is a valid diagram on k > n
2

> N
2

points with the size of its bottom set in (3k
19
20 , k

100
], or

D′ is a valid diagram on k < n points with bottom set larger than k
100

. There are at most

2(k
2)−2k

5
4

possible diagrams in the first case by Theorem 5.1, and by the induction hypothesis

there are at most A2(k

2)−k−k
5
4

possible diagrams in the second case. So there are at most

2(k

2)−2k
5
4
+A2(k

2)−k−k
5
4

< (A+1)2(k

2)−k−k
5
4

possibilities for D′. Now the following construction
includes every diagram in this case.

Choose a top set T , with 1
200δ

≤ |T | ≤ 99n
100

. Choose a set P ′ of 1
200δ

points in T . Choose
lines within P ′ and from P ′ to T − P ′. Choose at most δn points in B to be below each
point in P ′. Choose at most |B|

200
lines going from each point in P ′ to B. Choose any valid

diagram with sufficiently large bottom set on B ∪ T − P ′. Hence an upper bound for the
number of valid diagrams in this case is:

∑

|T |

(

n

|T |

)( |T |
1

200δ

)

2(
1

200δ
2 )+ 1

200δ
(|T |− 1

200δ
)

(

2

(|B|
δn

)

2

(|B|
|B|
200

)

)
1

200δ

(A + 1)2(k

2)−k−k
5
4

< n22n2(n

2)2−
|B|
200δ

(

200e|B|
|B|

)

|B|
20000δ

(A + 1)2−k−k
5
4

< A2(n
2)21+log n+2n+

|B| log(200e)
20000δ

− |B|
200δ

−k−k
5
4

< A2(n

2)21+log n+2n− |B|
400δ

−k−k
5
4

< A2(n
2)2

1+log n+2n− n
40000δ

−n−n
5
4 +(n−k)+

“

n
5
4 −k

5
4

”

< A2(n

2)−2n−n
5
4
21+log n+3n+ 1

200δ
+ 5

800δ
n

1
4 − n

40000δ

< A2(n
2)−2n−n

5
4

since n > 1060 and δ = 10−9.

Then there are at most A2(n

2)−2n−n
5
4

+ 2.2(n

2)−2n
5
4

< A2(n

2)−n−n
5
4

valid diagrams with
|B| > n

100
. Therefore the induction hypothesis holds for n.
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By induction, Fs(n) < A2(n
2)−n−n

5
4

for all n. If n is sufficiently large that 2n > A, then

we have Fs(n) < 2(n

2)−n
5
4
, which completes the proof.

7 Upper bound for H(n)

Collecting results, from Theorem 5.1 we have that there are at most 2(n
2)−

n
23 valid diagrams on

n points with |B| ≤ n
100

that do not correspond to unate 2-SAT functions, for all sufficiently

large n. From Theorem 6.3, we have that there are at most 2(
n
2)−n

5
4

valid diagrams on n
points with |B| > n

100
, for all sufficiently large n.

Since each nonnegative 2-SAT function on n variables can be obtained by applying
M to at most 2n elementary functions on n variables, we have that there are at most

2n

(

2(n
2)−

n
23 + 2(n

2)−n
5
4

)

elementary 2-SAT functions which are not unate, for all sufficiently

large n.

There are at most 2(n
2)+n unate 2-SAT functions. So we obtain an upper bound for H(n)

valid for all sufficiently large n:

H(n) < 2(n
2)+n

(

1 + 2−
n
23 + 2−n

5
4

)

< 2(n
2)+n

(

1 + 2−
n
24

)

for all sufficiently large n.

8 Improvements

We can now easily prove Theorem 1.2, restated here for convenience.

Theorem 1.2. For sufficiently large n, the average number of satisfying assignments of a

2-SAT function on n variables is

(1 + o(1))

5
√

n
∑

k=0

(

n

k

)

2−(k
2) = 2( 1

2
+o(1)) log2 n ,

which is asymptotically equal to the average number of independent sets in a graph on n
points.

Proof. The average number of satisfying assignments of a 2-SAT function on n variables is
equal to the number of pairs (F, A), where F is a 2-SAT function on n variables and A is a
satisfying assignment of F , divided by the number of 2-SAT functions on n variables. Since
we know the latter, we only need to compute the former. First we find the number of such
pairs where F is an elementary 2-SAT function on n variables:
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Observe that if (F, A) is a pair as above, with F elementary, then we can let the set of
variables which are assigned False in A be X, and relabelling the variables X on F must give
a nonnegative 2-SAT function, which corresponds to an unique valid diagram D. Thus there
are as many pairs with F elementary as there are pairs (D, X) where D is a valid diagram
and X a subset of the n variables. There are 2n possible X, so there are 2nF (n) such pairs.
Following the logic in Section 2, the total number of pairs (F, A) where F is any 2-SAT
function on n variables is (1 + o(1))2nF (n). Now recall that when the valid diagrams were
split into several types, the largest was the class of diagrams in Case (ix) of Theorem 5.1.
There are

2(n
2)

5
√

n
∑

k=0

(

n

k

)

2−(k
2)

diagrams in that case, so that there are

(1 + o(1))2(n

2)+n

5
√

n
∑

k=0

(

n

k

)

2−(k

2)

pairs (F, A) where F is a 2-SAT function on n variables and A is a satisfying assignment for
F . Hence the average number of satisfying assignments of a 2-SAT function on n variables
is

(1 + o(1))

5
√

n
∑

k=0

(

n

k

)

2−(k

2)

as required. This sum is part of a sum giving the average number of independent sets in
a graph on n points, and it is trivial to see that the sum is dominated by the terms with
k approximately log n, so that the average number of satisfying assignments of a 2-SAT
function on n points is asymptotically equal to the average number of independent sets in a

graph on n points and the approximation 2(
1
2
+o(1)) log2 n is valid.

We now make some improvements to Theorem 1.1. First, observe that in the proof of

this theorem, we could only bound above the class of non-unate 2-SAT functions by 2(n

2)+ 24n
25

because of the bound in Case (iv) of Theorem 5.1.

Given a 2-SAT function S, let F be the unique maximal 2-SAT formula for S. If V is a
subset of the domain of S, we can define the formula F ′ which contains exactly the clauses
of F that do not contain literals associated to the variables in V . We say we can remove the

variables V from S to get S ′, a 2-SAT function on n − |V | variables given by the formula
F ′. Observe that if R is any subset of the domain of S, then relabelling the variables R on
S then removing the variables V gives the same result as removing the variables V from S
then relabelling the variables R.

If we can remove a set of k variables from a 2-SAT function S to obtain a unate 2-SAT
function, then we say that S is k-nearly-unate. If S is k-nearly-unate but not (k−1)-nearly-
unate, we say that S is exactly k-nearly-unate.

Observe that if S is an elementary function, and the set V of variables is removed from
S to give S ′, then P (S ′) is precisely the partial order on the 2n − 2|V | literals induced by
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P (S). If also S is nonnegative, however, D(S ′) is not in general the diagram given by simply
removing the points V and lines and arrows meeting them from D(S). The arrows in D(S ′)
correspond to the arrows in D(S) not meeting V . But if ab is a line in D(S), and a ∈ V ,
and c > a, then cb may be a line in D(S ′) (if c < b is a covering relation in P (S ′) ). If ab is
a line in D(S), and a, b ∈ V , and a < c, b < d, then cd may be a line in D(S ′). However, if
e, f are points in D(S ′), then ef can only be a line if either it is a line in D(S) or one of the
two above situations occurs.

We will require the following simple lemma.

Lemma 8.1. Let G be any graph, and k any integer. Then we can find either a set E
consisting of at least k

2
independent edges of G, or a set Z consisting of at most k vertices

of G which meets every edge of G.

Proof. Given a graph G, let E be a maximal set of independent edges of G. Then either E
has size at least k

2
, or the set Z =

⋃

E has size at most k. Z must meet every edge of G
since E is maximal.

Theorem 8.2. For any k = k(n) such that k(n) < n
1
4 for all sufficiently large n, the set of

2-SAT functions on n variables which are not k-nearly-unate has size at most 2(n
2)+n− kn

25 for

all sufficiently large n.

Proof. We follow essentially the same logic as was used to prove Theorem 1.1.

We observe that for sufficiently large n, if k(n) = 0 then the conclusion certainly holds
for that n by Theorem 1.1, so in the remainder of the proof we shall assume k > 0.

First we show that for any such k, for sufficiently large n, the set Hk(n) of elementary

2-SAT functions on n variables which are not k-nearly-unate has size at most 2(n

2)+n− kn
24 .

We let Dk(n) be the set of valid diagrams corresponding to the nonnegative 2-SAT
functions on n variables which are not k-nearly-unate.

As before, we divide Dk(n) into two parts: the diagrams with |B| > n
100

, and the diagrams

with |B| ≤ n
100

. Theorem 6.3 tells us that the first part has size at most 2(
n
2)−n

5
4

for sufficiently
large n, so we only need to bound the second part.

We bound above the set of valid diagrams with |B| ≤ n
100

corresponding to 2-SAT func-
tions on n points which are not k-nearly-unate. For such a diagram, we define the sets
Γarr(b), Γline(b) for b ∈ B, I, P , Sa, La for a ∈ I, S as in Theorem 5.1. We also define sets
S ′

p, L′
p, for some p ∈ P , and the set S ′ as follows. If p ∈ P , and there is a ∈ I with ap a line

in D and La is the set of arrow neighbours of a, then let S ′
p = Γarr(p)−S, L′

p = Γarr(a)−S.
Let S ′ be the union of the defined S ′

p. We now split the set of these valid diagrams into five
parts:

Case (i): |P | ≥ 84n
1
4 .

Case (ii): |P | < 84n
1
4 and |S| ≥ 100n

1
4 .

Case (iii): |P | < 84n
1
4 , |S| < 100n

1
4 and |B| ≥ 3n

19
20 .
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Case (iv): |P | < 84n
1
4 , |S| < 100n

1
4 , |B| < 3n

19
20 and |P | + |S| + |S ′| > k.

Case (v): |P | < 84n
1
4 , |S| < 100n

1
4 , |B| < 3n

19
20 and |P |+ |S| + |S ′| ≤ k.

By identical logic to that in Theorem 5.1, each of Cases (i), (ii), (iii) contains at most

2(n
2)−3n

5
4

valid diagrams, for sufficiently large n.

We now provide a bound for Case (iv).

Observe that, if p ∈ P is connected by a line to a ∈ I, with La the set of arrow
neighbours of a, then L′

p = Γarr(a)−S cannot intersect S ′
p since the structure (1) is forbidden.

Furthermore, there can be no lines between S ′
p and L′

p since structure (3) is forbidden. Now
|L′

p| ≥ n
10

− |S| > n
11

for sufficiently large n. This means that by Lemma 4.1 there is a

forbidden set in T of size |S′|n
22

, which does not intersect the forbidden set between the sets
Li and Si (i ∈ I) since no member of this new forbidden set has an end in S. So we can
construct any diagram in this case in the usual way: given B, P, S, choose the lines and
arrows from P to T , whether the members of I have as their large set their set of line or
arrow neighbours, the lines and arrows from I to T − S, the lines and arrows from I to S,
the lines and arrows within B, which fixes S ′, and finally the lines within T , taking account
of both the forbidden sets. This allows us to use in this case the bound

D(B, P, S) < 2|P ||T |2−
|P |n
21 2|I|2|I||T−S|3|I||S|2(|B|

2 )|B|!2(|T |
2 )− |S|n

20
− |S′|n

22

< 2(n

2)2|I||B|!2− (|P |+|S|+|S′|)n
22

< 2(n
2)−n0.9− kn

23

for sufficiently large n, so that in this case the number of valid diagrams is bounded above

by 2(n

2)−
kn
23 . △

Finally we bound Case (v):

Given a diagram D in Case (v), we draw a graph G with V (G) = I. If a, b ∈ I,
La = Γline(a), Lb = Γarr(b), and either ab is a line or ab being a line would create one of
the forbidden structures (2), (3) (so that ab could potentially be a line in some diagram D′

obtained by removing variables), then we put ab ∈ E(G). If a < b in D, La = Γline(a) and
Lb = Γline(b), then we put ab ∈ E(G). If a < b in D, La = Γarr(a) and Lb = Γarr(b), then
we put ab ∈ E(G). Otherwise we do not put ab ∈ E(G).

We split this case into three sub-cases:

Subcase (a): There is a line ab in I, with both La the set of arrow neighbours of a and
Lb the set of arrow neighbours of b.

In this case, there is a forbidden set of size at least n2

100
in T , and we can bound above

the number of valid diagrams in this case as in Case (v) of Theorem 5.1, obtaining a bound

2(n

2)−n
5
4

for sufficiently large n.
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Subcase (b): There is no line between any two points a, b ∈ I with both La the set of
arrow neighbours of a and Lb the set of arrow neighbours of b. We cannot find any set of
q = k − |P | − |S| − |S ′| points in I such that every edge in E(G) touches the set.

In this case, by Lemma 8.1 there must be a set E of ⌈ q

2
⌉ edges in E(G), no two of which

meet at any point.

Suppose we know for each point i ∈ I whether its large set is its set of arrow or line
neighbours. We have previously used the bound 2|I| on the choices of lines and arrows
between I and any given t ∈ T − S. But now observe that if ab ∈ E, we have only 3 choices
for the lines and arrows from a, b to t; if ab is in E because a < b in D with both La = Γline(a)
and Lb = Γline(b), then we cannot choose to put lines from both a and b to t since structure
(2) is forbidden, and so on. Since the edges in E are independent, we obtain a bound 2|I|−q3

q

2

on the number of choices of lines and arrows between I and t.

We can construct every diagram in this case as follows: Given B, P , S, we choose the ⌈ q

2
⌉

edges in E, and whether they are to correspond to lines or arrows in one or the other direction
in D. We choose for each i ∈ I whether Li is to be the set of line or arrow neighbours of
i. We choose the lines and arrows from I to T − S, taking account of the above restriction,
and from I to S. We choose the lines and arrows from P to T , the lines and arrows within
B, and the lines within T , taking account of both the forbidden sets (note S ′ and the L′

p are
already chosen). This gives us the bound

D(B, P, S) <

(

3

(|I|
2

))⌈ q
2
⌉
2|I|2(|I|−q)|T−S|3

q
2
|T−S|3|I||S|2|P ||T |2−

|P |n
21 2(|B|

2 )|B|!2(|T |
2 )−n|S|

20
−n|S′|

22

<
(

3|B|2
)k

2|I||B|!2(n

2)2−
(|P |+|S|+|S′|)n

22
− k−|P |−|S|−|S′|

2
98n
100

log 4
3

< 2(n
2)−

kn
23

−n0.9

for sufficiently large n, so that the number of diagrams in this subcase is bounded above by

2(n
2)−

kn
23 .

Subcase (c): There is no line between points a, b ∈ I with both La the set of arrow
neighbours of a and Lb the set of arrow neighbours of b. We can find a set Z of k − |P | −
|S| − |S ′| points in I which meets every edge in E(G).

Let D′ be the diagram corresponding to the nonnegative 2-SAT function obtained by
removing the k variables V = P ∪ S ∪ S ′ ∪ Z from the 2-SAT function corresponding to D.
Recall that the arrows in D′ correspond to the arrows in D not meeting V , but there may
be some lines in D′ which do not correspond to lines in D, but exist because the covering
relations have changed. We will continue to use T , B to refer to the top and bottom sets of
D, and will use T ′, B′ for the top and bottom sets of D′.

Suppose a ∈ I has La = Γline(a), and a < b for some b ∈ I. Then b has Lb = Γline(b),

otherwise Sa ⊃ Lb, but |Sa| < 100n
1
4 < |Lb|. So either a or b must be in Z. It follows that

any point a ∈ I − Z with La = Γline(a) is maximal in D′.
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Suppose that a point b ∈ I −Z has Lb = Γarr(b), and in D′ there is a line db for some d.
Certainly db cannot have existed in D, as that would imply either a line between two points
whose large sets are their sets of arrow neighbours, d ∈ S, d ∈ Z or d ∈ P . Furthermore,
d /∈ B, as that would imply either d ∈ P or d ∈ Z, so d ∈ T . Recall that d /∈ V . There are
three possibilities.

First, there could be e ∈ V , with de a line in D and e < b. But then e ∈ I, since e has
at least |Lb| arrow neighbours in T , and this would imply d ∈ S.

Second, there could be f ∈ V with f < d and fb a line in D. But then f /∈ I, since this
would either imply d ∈ S or fb would be a line between two points in I with large sets their
sets of arrow neighbours. So f ∈ P , and then we have d ∈ S ′.

Third, there could be a, c ∈ V with a < b, c < d, and ac a line in D. Since a < b, so a
has at least |Lb| arrow neighbours, and a ∈ I. Since |S| < 100n

1
4 < |Lb|, so La would be the

set of arrow neighbours of a. Then if c ∈ I, we would have either d ∈ S or ac would be a
line between two points in I with large sets their sets of arrow neighbours. So c ∈ P , and
we have d ∈ S ′.

Thus we see that we cannot have any point b ∈ I − Z with Lb = Γarr(b) which meets a
line in D′.

Now the top set T ′ of D′ consists of T −S−S ′ together with those points in I −Z whose
large set was their line set, while the bottom set B′ of D′ consists of those points in I − Z
whose large set was their arrow set. Then there are no lines within B′. There are no arrows
within B′, since Z was removed. There are no lines between B′ and T ′ as above. Now, by
Lemma 3.1, D′ corresponds to an unate 2-SAT function on n − k points, contradicting the
original diagram on n points being in Dk(n). Hence there are no diagrams in this subcase.△

Adding up the bounds from all the cases, we see that for any k = k(n) with k(n) < n
1
4

for all sufficiently large n, we have

|Dk(n)| < 3.2(n
2)−3n

5
4

+ 2.2(n
2)−n

5
4

+ 2.2(n
2)−

kn
23

< 2(n

2)−
kn
24

for all sufficiently large n, and |Hk(n)| < 2(n

2)+n− kn
24 .

Since every 2-SAT function which is not k-nearly-unate can be reduced to an elementary
2-SAT function on n−l variables which is not (k−l)-nearly-unate if k ≥ l, or to an elementary
2-SAT function on n − l variables if k < l, we can follow the logic in Section 2 and bound
above the size of the set of 2-SAT functions on n variables which are not k-nearly-unate by

1 +

k
∑

l=0

(

n

l

)

(2n + 2 − 2l)lHk−l(n − l) +

n
∑

l=k+1

(

n

l

)

(2n + 2 − 2l)lH(n − l)

< 1 +

k
∑

l=0

(

n

l

)

(2n + 2 − 2l)l2(n−l

2 )+n−l− (k−l)(n−l)
24

26



+
n
∑

l=k+1

(

n

l

)

(2n + 2 − 2l)l2(n−l
2 )+n+log2(n−l) ,

which sum is, by the same logic as used to prove Theorem 1.1, dominated by the term

2(n
2)+n− kn

24 , hence is, for sufficiently large n, bounded above by 2(n
2)+n− kn

25 .

Finally, we prove Theorem 1.3. We find the next largest class of 2-SAT functions after
the unate functions: we will see that this is a subset of the set of 1-nearly-unate 2-SAT
functions. Let W (n) be the set of 2-SAT functions which are not unate and which are given
by taking a monotone function and changing exactly one positive literal x in one clause of
its formula to the corresponding negative literal x. Let V (n) be the set of 2-SAT functions
given by relabelling variables on the elements of W (n).

Note that applying the above process to a monotone function results in a unate function
if and only if x is mentioned just once in the formula for the monotone function.

We can easily find the size of W (n). Observe that all elements of W (n) are nonnegative;
then they are in 1-1 correspondence with the diagrams on n points which have |T | = n − 1,
and x ∈ B is linked to exactly one element y ∈ T by an arrow, and to at least one other
element of T by a line. As structure (2) is forbidden, for every other z ∈ T there cannot

be lines from z to both y and x. Therefore there are at most n(n − 1)2(n−2
2 )3n−2 such valid

diagrams. There are at least

n(n − 1)
(

2(n−2
2 ) − n22(n−3

2 )
)

(

3n−2 − 2

((

n − 2

0

)

+

(

n − 2

1

))

2n−2

)

such valid diagrams in which every point has at least two lines connected to it.

Therefore
(

n

2

)

2(n
2)2−2(n−2)

(

1 − o(2−
n
2 )
)

3n−2
(

1 − o(2−
n
2 )
)

< |W (n)| <

(

n

2

)

2(n
2)2−2(n−2)3n−2

so
(

n

2

)

2(n

2)
(

3

4

)n−2
(

1 − o(2−
n
2 )
)

< |W (n)| <

(

n

2

)

2(n

2)
(

3

4

)n−2

for sufficiently large n.

Now |V (n)| ≤ 2n|W (n)|, but also if R, R′ are subsets of the n variables and w, w′ are
elements of W (n) corresponding to diagrams in which every point has at least two lines
connected to it, then the functions given by relabelling the variables R on w and R′ on w′

are distinct unless R = R′, w = w′. Thus

(

n

2

)

2(n

2)+n

(

3

4

)n−2
(

1 − o(2−
n
2 )
)

< |V (n)| <

(

n

2

)

2(n

2)+n

(

3

4

)n−2

.

Now we improve the bounds from Theorem 5.1 to show that V (n) really is the next
largest class of 2-SAT functions after the unate functions. The following proof is essentially
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a more precise, but much longer, replacement for the argument in Case (iv) of Theorem 5.1;
it was left to this point to make that theorem more easily understood.

We observe that three types of diagram correspond to functions in V (n):

(p) the diagrams in which B contains no lines, there is a point x in B which is connected
to exactly one point in T by an arrow and to at least one other point in T by a line, any
arrows in B go to x, and all other points in B are connected to points in T by arrows only,

(q) the diagrams in which B contains no arrows or lines, there is a point x in B which
is connected to exactly one point in T by a line and to at least one other point in T by an
arrow, and all other points in B are connected to points in T by arrows only,

(r) the diagrams in which B contains exactly one arrow and no lines, and there are no
lines between B and T .

We restate Theorem 1.3 for convenience:

Theorem 1.3. For sufficiently large n,

2(n

2)+n

(

1 +

(

n

2

)(

3

4

)n−2

− 2−
n
2

)

< G(n) < 2(n

2)+n

(

1 +

(

n

2

)(

3

4

)n−2

+ 2−
418n
1000

)

and the next largest class of 2-SAT functions after the unate 2-SAT functions is V (n).

Proof. We find that the bound in Theorem 6.3 is already good enough, as are the bounds
in Theorem 5.1 Cases (i), (ii), (iii), (v), (vi), (vii). We observe that the diagrams in Case
(viii) already correspond to 2-SAT functions in V (n) (in form (r) ), and that those in Case
(ix) correspond to the unate functions, which we have already enumerated with sufficient
accuracy. Hence we only need to improve the bounds given in Case (iv) of Theorem 5.1.

Case (iv) of Theorem 5.1 covered diagrams such that |P | < 84n
1
4 , |S| < 100n

1
4 , |B| < 3n

19
20

and at least one of |P | > 0, |S| > 0 holds.

We now split this into several cases and analyse each.

(a) |P | < 84n
1
4 , 1 < |S| < 100n

1
4 , |B| < 3n

19
20 .

(b) |S| ≤ 1, 0 < |P | < 84n
1
4 and |B| < 3n

19
20 .

(c) |S| = 1, |P | = 0, |B| < 3n
19
20 and there are at least two points in B with non-empty

small set.

(d) |S| = 1, |P | = 0, |B| < 3n
19
20 , only one point b ∈ B has |Sb| = 1 and there is a line

within B.

(e) |S| = 1, |P | = 0, 5
√

n ≤ |B| < 3n
19
20 , only one point b ∈ B has |Sb| = 1 and there is

no line within B.

(f) |S| = 1, |P | = 0, |B| < 5
√

n, only one point b ∈ B has |Sb| = 1, there is no line within
B but there is an arrow within B.

(g) |S| = 1, |P | = 0, |B| < 5
√

n, only one point b ∈ B has |Sb| = 1 and there are no lines
or arrows within B.
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Case (a):

As in Theorem 5.1, we will use the bounds |I| log 3
2

< n
1000

, n3
(

n

|B|
)(|B|

|P |
)(|T |

|S|
)

< 2n0.9
and

2|I||B|! < 2
n

1000 in the following cases.

We divide this into two sub-cases.

Subcase (1): |S| > 40.

We use (2) from Theorem 5.1 which gives us

D(B, P, S) < 2(n
2)2−

|P |n
21 2−

40n
21 < 2(n

2)−n−n0.9

for all sufficiently large n, so that the sum (1) from Theorem 5.1 is bounded above by 2(
n

2)−n.

Subcase (2): 2 ≤ |S| ≤ 40.

We observe that as there are at least two points in S, there are at most
(

40
2

)

pairs in

T (2) with both points in S, and the forbidden set has size at least 2l − 800, where l is the
minimum of the |Li| for i ∈ I. We can construct diagrams in this subcase, given B, P , S, by
choosing the lines and arrows from the points in P to T , choosing for each point in I lines
and arrows to S and lines to T , using the fact that there are at most

(|T |
l

)

ways to choose
lines from the point i with |Li| = l (|I| ways to choose i), choosing lines and arrows within
B and finally lines within T , taking account of the forbidden set. This gives us

D(B, P, S) < 2|P ||T |2−
|P |n
21 3|S||I||I|2(|I|−1)|T |

(|T |
l

)

2(|B|
2 )|B|!2(|T |

2 )−2l+800

< 2(n

2)2−
|P |n
21 240|I| log 3

2 2−|T |
(|T |

l

)

2−2l+800|B|! .

Now 240|I| log 3
2 2800|B|! < 2n0.9

for all sufficiently large n, so

D(B, P, S) < 2(n

2)2−2l− 99n
100

(

n

l

)

2n0.9

< 2(n

2)−
n
2
−n0.9

for all sufficiently large n, and the sum (1) is bounded above by 2(n
2)−

n
2 . △

Case (b):

We divide this into two subcases.

Subcase (1): There is a point p ∈ P with |Sp| >
√

n.

Given B, P, S, we can construct the valid diagrams in this case by choosing the lines and
arrows within B and between B and T , and then choosing the lines within T . But since
|Lp| > |Sp| there are at least n pairs in T (2) which cannot be chosen as lines, and we can
bound above the number of possibilities by
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D(B, P, S) < 2(|B|
2 )|B|!2|P ||T |2−

|P |n
21 2|I|2|I||T−S|3|I||S|2(|T |

2 )−n

< 2(n
2)−n+(1+log 3

2
)|I||B|! < 2(n

2)−
n
2
−n0.9

for all sufficiently large n, so that in this subcase (1) is bounded above by 2(
n
2)−

n
2 .

Subcase (2): Every point p ∈ P has |Sp| ≤
√

n.

Now instead of there being
(

2
(|T |

n
10

)

)2

ways to choose the arrows and lines from each point

in P , there are only 4
(|T |

n
10

)(|T |√
n

)

< 2
n
2 ways, for sufficiently large n. Hence we can bound

above the number of possibilities by

D(B, P, S) < 2(|B|
2 )|B|!2|P ||T |2−

|P |n
2 2|I|2|I||T−S|3|I||S|2(|T |

2 )

< 2(n
2)−

99|P |n
200 < 2(n

2)−
49n
100

−n0.9

for sufficiently large n, so that in this subcase (1) is bounded above by 2(
n
2)−

49n
100 . △

Case (c):

Let the two points in B with non-empty small set be a, b. Then the forbidden set has
size at least l = max(|La|, |Lb|). Observe that there are at most l

(|T |
l

)

ways to choose the
large sets of each of a, b, and that

(

l

(

n

l

))2

2−l

is maximised at l = (
√

2− 1)n. We construct the diagrams in this case by choosing B, l, S,
the two points with non-empty small set, whether the large set of each point in B will be
its arrow neighbours or line neighbours, the small sets of all the points in B, then we choose
the large sets of both the points with non-empty small set, the large sets of the rest of the
points in B, the lines and arrows within B and finally the lines within T . This allows us to
bound (1) in this case by

∑

|B|,l

(

n

|B|

)(|T |
1

)(|B|
2

)

2|B|2|B||S|
(

l

(|T |
l

))2

2(|B|−2)|T |2(|B|
2 )|B|!2(|T |

2 )−l

< 22n0.9

2(n
2)−

198n
100

(

n

n(
√

2 − 1)

)2

2−(
√

2−1)n

< 2(n
2)−

42n
100

for all sufficiently large n. △

Case (d):

We know that every point in B except b has only arrow neighbours in T . If the line
in B does not touch b, or if Lb is the set of arrow neighbours of b, then we will be able to
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write down exactly the same bound as in Case (v) of Theorem 5.1. If b has its large set its
line neighbours, and the line in B is ab for some a ∈ B, then we find that there can be no
arrows from a to Lb or S, since structures (2) and (1) are forbidden. If |La| = l, then we
find a forbidden set of size l in T . We can construct these diagrams by choosing a, b, arrows
from B − {a, b} to T , arrows from a to T − S and lines from b to T − S, the arrow and line
connections within B, lines within T − S, and finally lines in T . We can bound this above
by:

D(B, P, S) <
∑

l

2

(|B|
2

)

2(|B|−2)|T |
(|T |

l

)

2|T |−l2(|B|
2 )|B|!2(|T |

2 )−l

< 2(n
2)−

n
2
−n0.9

for all sufficiently large n, so that in this case (1) is bounded by 2(n

2)−
n
2 . △

Case (e):

We use exactly the same argument as in Case (vi) of Theorem 5.1 and get the same
bound. △

Case (f):
Subcase (1): If b has Lb the set of its arrow neighbours in T , or there is an arrow in B that
does not go to or from b, then let the arrow be c < d. We note that if d < t, then c < t and
so there are at most 3|T | choices for arrows between {c, d} and T . We note that there is also
a forbidden set in T of size at least n

10
between Lb and Sb, so that following the usual logic

the number of diagrams in this subcase is bounded above by:

∑

|B|

(

n

|B|

)(|T |
1

)

2

(|B|
1

)

2(|B|
2 )|B|!2(|B|−2)|T |3|T |2(|T |

2 )− n
10

< 2(n
2)−|T | log 4

3
− n

10 < 2(n
2)−

n
2 .

Subcase (2): If b has Lb the set of its line neighbours, and the only arrows in B go to b, then
for every point a with a < b, La is the set of arrow neighbours of a, since Sa is empty. These
diagrams correspond to 2-SAT functions in V (n), in the form (p).
Subcase (3): If b has Lb the set of its line neighbours, and there is an arrow in B from b
to a, then every point in La is above b, which contradicts |Sb| = 1. Thus there are no valid
diagrams in this subcase. △

Case (g):

These diagrams correspond to 2-SAT functions in V (n), in forms (p) and (q). △

We have now improved the bounds on Case (iv) of Theorem 5.1, so that we may say that

for sufficiently large n there are at most 2(n

2)−
419n
1000 valid diagrams which do not correspond

either to unate 2-SAT functions or to 2-SAT functions in V (n).
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Following the same logic as was used to prove Theorem 1.1, we now obtain for sufficiently

large n an upper bound 2(n
2)+n− 418n

1000 on the number of 2-SAT functions which are neither unate
nor in V (n).

9 Further thoughts

We could certainly continue to extract further classes of 2-SAT functions in decreasing size
order, either in the manner of Theorem 1.3 or by enumerating the large classes of k-nearly-
unate functions for suitable k and appealing to Theorem 8.2 to show that there are no larger
classes left uncounted.

It is obvious that Theorem 8.2 is not best possible: the constant 1
25

is certainly too small.
Also, we conjecture that in fact the result holds for any function k(n). However, observe that
the class of 2-SAT functions on n variables which consist of the first k variables all having
their positive literals in the spine, and the remaining n − k variables forming a monotone

function, has size 2(n−k

2 ) = 2(n

2)−kn+ k2+k
2 . All functions in this class are exactly k-nearly-

unate, so that we do not expect a sharp upper bound on the number of non-k-nearly-unate
functions to be of a substantially different form to that given.

Prömel, Schickinger and Steger [8] find that almost every triangle-free graph which is not
bipartite, and cannot be made bipartite by removing one vertex, can be made bipartite by
removing two vertices, and so on; Theorem 8.2 suggests that the corresponding result holds
for our problem. We conjecture that the class of 2-SAT functions on n variables which are
exactly k-nearly-unate is larger than the class of those which are exactly (k+1)-nearly-unate
by a factor of at least 2ǫn for all sufficiently large n, all k, and some constant ǫ > 1

25
.

Our results only hold for a number n of variables greater than some (very large) number
N . It is worth considering whether we really needed to apply the Szemerédi Regularity
Lemma, which was responsible for causing N to be so large; to obtain our results we did
not make as much use of the lemma as in [2], where, (implicitly) the Regularity Lemma is
applied for an infinite sequence of ǫ’s tending to zero, and we did not need the lemma at all
to deal with the large case. However, even if a method of avoiding it could be found, other
parts of the proof require N to be so large as to be useless for practical application.

This paper does not attempt to attack the problem posed in [2] of determining the
asymptotic behaviour of the number of k-SAT functions for k > 2; in [2], an upper bound

2
√

π(k+1)(n
k) is given, and the conjecture offered that the exponent should in fact be

(

n

k

)

(1 + o(1)). It does not seem likely that the methods applied here will be of any use for
this more general problem; the first step of moving from 2-SAT functions to partial orders
has no obvious analogue in the case of 3-SAT or higher. The problem of determining the
asymptotic behaviour of the number of k-SAT functions on n variables in the case k > n

2
is

also studied in a paper of Bollobás and Brightwell [3].
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