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Abstract

In modelling parasitic diseases, it is natural to distinguish hosts
according to the number of parasites that they carry, leading to a
countably infinite type space. Proving the analogue of the determin-
istic equations, used in models with finitely many types as a ‘law of
large numbers’ approximation to the underlying stochastic model, has
previously either been done case by case, using some special structure,
or else not attempted. In this paper, we prove a general theorem of
this sort, and complement it with a rate of convergence in the `1-norm.

Keywords: Epidemic models, infinitely many types, quantitative law of
large numbers

AMS subject classification: 92D30, 60J27, 60B12
Running head: Epidemics with countably many types

1 Introduction

This paper is concerned with generalizations of the stochastic models
introduced in Barbour & Kafetzaki (1993) and developed in

Luchsinger (2001a,b), which describe the spread of a parasitic disease.
With such diseases, it is natural to distinguish hosts according to the
number of parasites that they carry. Since it is not usually possible to
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prescribe a fixed upper limit for the parasite load, this leads to models
with countably infinitely many types, one for each possible number of
parasites. The model considered by Kretzschmar (1993) is also of this
kind, though framed in a deterministic, rather than a stochastic form.

Then there are models arising in cell biology, in which, for instance, hosts
may be replaced by cells which are distinguished according to the number

copies of a particular gene that they carry, a number which is again in
principle unlimited; see Kimmel & Axelrod (2002, Chapter 7) for a

selection of branching process examples. The metapopulation model of
Arrigoni (2003) also allows for infinitely many types of patches, here

distinguished by the size of the population in the patch.
The fact that there are infinitely many types can cause difficulty in

problems which, for finitely many types, would be quite standard. To take
a well known example, in a super-critical Galton–Watson branching

process with finitely many types, whose mean matrix is irreducible and
aperiodic and whose offspring distributions have finite variance, the

proportions of individuals of the different types converge to fixed values if
the process grows to infinity: a rather stronger result is to be found in
Kesten & Stigum (1966). If there are infinitely many types, little is

generally known about the asymptotics of the proportions, except when
the mean matrix is r-positive, a condition which is automatically satisfied
in the finite case; here, Moy (1967) was able to prove convergence under a
finite variance condition. For epidemic models analogous to those above,

but with only finitely many types, there are typically ‘law of large
numbers’ approximations, which hold in the limit of large populations, and

are expressed in the form of systems of differential equations: see, for
example, Bailey (1968) or Kurtz (1980). Proving such limits for models

with infinite numbers of types is much more delicate. Kretzschmar (1993)
begins with the system of differential equations as the model, and so does

not consider the question; in Barbour & Kafetzaki (1993) and
Luchsinger (2001a,b), the arguments are involved, and make use of special

assumptions about the detailed form of the transition rates.
In this paper, we show that a law of large numbers can be established in

substantial generality. The models that we allow are constructed by
superimposing state-dependent transitions upon a process with otherwise

independent and well-behaved dynamics within the individuals; the
state-dependent components are required to satisfy certain Lipschitz and

growth conditions, to ensure that the perturbation of the underlying
semi-group governing the independent dynamics is not too severe. The

main approximation is stated in Theorem 4.1, and bounds the difference
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between the normalized process N−1XN and a deterministic trajectory x
with respect to the `1-norm, uniformly on finite time intervals. The

theorem is sufficiently general to cover all the epidemic models mentioned
above, except for that of Kretzschmar (1993), where only a version with a

truncated infection rate can be treated. The proof is by way of an
intermediate approximation, based on a system X̃N consisting of

independent particles, which has dynamics reflecting the average behaviour
of XN . The deterministic trajectory x is discussed in Section 3, the

approximation of N−1X̃N by x in Section 4, culminating in Theorem 4.6,
and the final approximation of N−1XN by x in Section 5.

2 Specifying the model

Our model is expressed in terms of a sequence of processes XN having
state space X := {X ∈ Z∞

+ :
∑

i≥0 Xi < ∞}, where Z+ denotes the
non-negative integers and Xi the i-th component of X. The process

XN (t) := (Xj
N (t) : j ∈ Z+), t ≥ 0, has

∑
j≥0 Xj

N (0) = N , and evolves as a
pure jump Markov process with transition rates given by

X → X + e(j)− e(i) at rate Xi{µ(i, j) + αij(N−1X)}, i ≥ 0, j ≥ 0, j 6= i;
X → X + e(i) at rate Nβi(N−1X), i ≥ 0;
X → X − e(i) at rate Xi{δ̄i + δi(N−1X)}, i ≥ 0,

where the non-negative quantities µ(i, j), αij , βi, δ̄i and δi are used to
model different aspects of the underlying parasite life cycle, and e(i)

denotes the ith coordinate vector.
We interpret Xi

N (t) as the number of hosts who carry i parasites at time t.
The first terms in the first and third transitions represent parasite

communities developing independently within different hosts, according to
a pure jump Markov process, which includes the possibility of host death at
rate δ̄i if its parasite load is i. Note that the elements µ(0, ·) are all zero if
only parasite mortality and reproduction are being modelled by the µ(i, j).
However, we may also allow them to include a part of the force of infection,
such as infection arising from external sources, that does not change with
varying levels x := N−1XN of infection among the host population. Hence

it may be the case that elements µ(0, ·) could be positive.
The second term αij(x) in the first transition is usually the main infection
term, allowing hosts to acquire further parasites at rates which can vary,

depending on the levels of infection in the entire host population. However,
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the αij(x) can also be used to model state dependent loss of infection, as,
for example, through treatment being offered when high levels of infection
are observed, so that it is not necessarily the case that αij(x) = 0 when

j < i. For convenience, we define αii(x) = 0 for all i. The remaining
transitions allow one to model births, deaths and immigration of hosts, in
the latter case possibly themselves infective, and they are all formulated so
that dependence on the detailed levels of infection in the host population is

allowed.
The components of the transitions rates will be required to satisfy a
number of conditions. First, we address the µ(i, j) and δ̄i. Letting ∆

denote an absorbing ‘cemetery’ state, reached if a host dies, set

µ(i, ∆) := δ̄i, µ(i, i) := −µ(i)− δ̄i, i ≥ 0,(2.1)

where µ(i) :=
∑

j≥0,j 6=i µ(i, j). Then µ is the infinitesimal matrix of a time
homogeneous pure jump Markov process W on Z+ ∪∆. Writing

pij(t) := P[W (t) = j |W (0) = i],

for i ≥ 0 and j ∈ Z ∪∆, we shall assume that µ is such that W is
non-explosive and that

E0
i {(W (t) + 1)} =

∑
j≥0

(j + 1)pij(t) ≤ (i + 1)ewt, i ≥ 0,(2.2)

for some w ≥ 0, where we use the notation

E0
i (f(W (t))) := E{f(W (t))I[W (t) /∈ ∆] |W (0) = i}.

We shall further require that, for some 1 ≤ m1,m2 < ∞,

µ(i) + δ̄i ≤ m1(i + 1)m2 for all i ≥ 0,(2.3)

and also that, for each j ≥ 0,

lim sup
l→∞

µ(l, j) < ∞.(2.4)

The remaining elements depend on the state of the system through the
argument x := N−1X. In the random model, x ∈ N−1X has only finitely

many non-zero elements, but when passing to a law of large numbers
approximation, this need not be appropriate in the limit. We shall instead

work within the larger space `11 := {x ∈ R∞:
∑

i≥0(i + 1)|xi| < ∞}
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endowed with the norm ‖x‖11 :=
∑

i≥0(i + 1)|xi|. We then assume that
αil, βi and δi are all locally `1-Lipschitz, and satisfy some extra conditions.

First, for i ≥ 0 and x, y ∈ `11, we assume that∑
l≥0

αil(0) ≤ a00,(2.5)

∑
l≥0

|αil(x)− αil(y)| ≤ a01(x, y)‖x− y‖1,(2.6)

∑
l≥0

(l + 1)αil(0) ≤ (i + 1)a10,(2.7)

∑
l≥0

(l + 1)|αil(x)− αil(y)| ≤ (i + 1)a11(x, y)‖x− y‖11,(2.8)

where the ar0 are finite,

ar1(x, y) ≤ ãr1(‖x‖11 ∧ ‖y‖11), r = 0, 1,

and the ãr1 are bounded on bounded intervals; as usual, ‖x‖1 :=
∑

i≥0 |xi|.
Then we assume that, for all x, y ∈ `11,∑

i≥0

βi(0) ≤ b00,(2.9)

∑
i≥0

|βi(x)− βi(y)| ≤ b01(x, y)‖x− y‖1,(2.10)

∑
i≥0

(i + 1)βi(0) ≤ b10,(2.11)

∑
i≥0

(i + 1)|βi(x)− βi(y)| ≤ b11(x, y)‖x− y‖11,(2.12)

where the br0 are finite,

br1(x, y) ≤ b̃r1(‖x‖11 ∧ ‖y‖11), r = 0, 1,

and the b̃r1 are bounded on bounded intervals; and finally that

sup
i≥0

δi(0) ≤ d0,(2.13)

sup
i≥0

|δi(x)− δi(y)| ≤ d1(x, y)‖x− y‖1,(2.14)

where d0 is finite and

d1(x, y) ≤ d̃1(‖x‖11 ∧ ‖y‖11),

5



with d̃1 bounded on finite intervals.
The various assumptions can be understood in the biological context.

First, the two norms ‖ · ‖1 and ‖ · ‖11 have natural interpretations. The
quantity ‖X − Y ‖1 is the sum of the differences |Xi − Y i| between the

numbers of hosts in states i = 0, 1, 2, . . . in two host populations X and Y ;
this can be thought of as the natural measure of difference as seen from

the hosts’ point of view. The corresponding ‘parasite norm’ is then
‖X − Y ‖11, which weights each difference |Xi − Y i| by the factor (i + 1),

the number of parasites plus one; in a similar way, writing x = N−1X, one
can interpret ‖x‖11 as a measure of ‘parasite density’.

The simplest conditions are (2.5), (2.9) and (2.13), which, together with
conditions (2.6), (2.10) and (2.14) with y = 0, ensure that the per capita

infection, birth, immigration and death rates are all finite, and bounded by
constant multiples of ‖x‖1 + 1. This for instance immediately excludes any

model in which the per capita infection rate is a constant K times the
parasite density ‖x‖11, and Kretzschmar’s (1993) model is excluded for the
same reason. Analogously, conditions (2.6), (2.10) and (2.14) for general y
imply that cumulative differences in the above rates between population

infection states x and y are limited by multiples of the host norm ‖x− y‖1

of the difference between x and y, and also that these multiples remain
bounded provided that the smaller of ‖x‖11 and ‖y‖11 remains bounded.

The remaining conditions concern parasite weighted analogues of the
preceding conditions. Conditions (2.11) and (2.12) constrain the overall

rate of flow of parasites into the system through immigration to be finite,
and bounded if the parasite density remains bounded; condition (2.12) also

limits the way in which this influx may depend on the infection state.
Conditions (2.7) and (2.8) impose analogous restrictions on the rates of
influx of parasites into hosts through infection. Here, the limitations are
imposed on the multiplicative rate of increase of parasites in a host, and

may be useful for modelling systems in which parasites can directly
reproduce in their hosts, and where this rate of reproduction can be

influenced by an immune response to external parasite challenge.
In all, these assumptions are relatively mild. We now show that they cover
the stochastic non-linear model introduced in Barbour & Kafetzaki (1993)
and the stochastic linear model from Barbour (1994), both of which were
generalized and studied in depth in Luchsinger (1999, 2001a,b), but not

that of Kretzschmar (1993).
In Luchsinger’s non-linear model, the total population size is fixed at N at
all times, with βi(x) = δi(x) = δ̄i = 0 for all i ≥ 0 and x ∈ `11. The matrix
µ is the superposition of the infinitesimal matrix of a pure death process
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with rate µ > 0 and the catastrophe process which jumps from any state
to 0 at constant rate κ ≥ 0. The first of the above expresses the

assumption that parasites die independently at rate µ. The second
corresponds to the fact that hosts die independently at rate κ, and their
parasites with them; whenever a host dies, it is instantly replaced by a

healthy individual. Thus the positive elements of µ are given by

µ(i, i− 1) = iµ, µ(i, 0) = κ, i ≥ 2; µ(1, 0) = µ + κ,

and µ(i, i), i ≥ 1, is determined by (2.1). The elements µ(0, j) are all zero.
As regards infection, hosts make potentially infectious contacts at rate
λ > 0, and infection can only occur in a currently uninfected host. If a

host carrying i parasites contacts a healthy one, infection with l parasites
is developed by the healthy host with probability pil, where

∑
l≥0 pil = 1

for all i and p00 = 1. Here, the distribution Fi = (pil, l ≥ 0) is the i-fold
convolution of F1, modelling the assumption that, at such a contact, the
parasites act independently in transmitting offspring to the previously

healthy host. These rules are incorporated by taking

α0l(x) = λ
∑
i≥1

xipil, l ≥ 1, x ∈ `11,

and the remaining αil(x) are all zero. Thus, for z ≥ 0, we can take
a00 = a10 = 0,

ã01(z) = λ, ã11(z) = λ max{θ, 1},

where θ is the mean of F1, the mean number of offspring transmitted by a
parasite during an infectious contact: thus

∑
l≥0 pil(l + 1) = iθ + 1.

In Luchsinger’s linear model, there is tacitly assumed to be an infinite pool
of potential infectives, so that the 0-coordinate is not required, and its

value may if desired be set to 0; the population of interest consists of the
infected hosts, whose number may vary. The matrix µ is the infinitesimal
matrix of a simple death process with rate µ > 0, but now restricted to the

reduced state space, giving the positive elements

µ(i, i− 1) = iµ, i ≥ 2;

hosts losing infection are now incorporated by using the δ̄i, with

δ̄i = κ, i ≥ 2; δ̄1 = κ + µ,
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again with µ(i, i), i ≥ 2, determined by (2.1). Only a member of the pool
of uninfected individuals can be infected, and infections with i parasites

occur at a rate λ
∑

l≥1 X lpli, so that we have

βi(x) = λ
∑
l≥1

xlpli, i ≥ 1,

with all the αil(x) and δi(x) equal to zero. Here, for z > 0, we can take
b00 = b10 = 0 and

b̃01(z) = λ, b̃11(z) = λ max{θ, 1}.

Both models exhibit an epidemic threshold behaviour as the parameter θ
increases, but its form is rather unexpected. For instance, if κ = 0 and

µ/λ ≤ e, the critical value of θ is µ/λ. This is in no way surprising, since
the mean number of offspring of a parasite over its whole lifetime is just

R0 := λθ/µ, and the usual branching process heuristic would suggest that
the critical value of R0 should be 1. However, if µ/λ > e, the critical value
of θ is instead eµ/eλ; see Luchsinger (2001a,b) for further details of the still

more complicated behaviour when κ > 0.
In Kretzschmar’s model, infection only takes place a single parasite at a
time, but at a complicated state dependent rate. Mortality of parasites is

modelled as before, and hosts can both die and give birth; here, death
rates increase with parasite load, and birth rates decrease. In our

formulation, the positive elements of µ are given by

µ(i, i− 1) = iµ, i ≥ 1,

and we take

δ̄i = κ + iα, δi(x) = 0,

for non-negative constants κ and α; again, the µ(i, i) are determined
by (2.1). The αil(x) are all zero except for l = i + 1, when

αi,i+1(x) = λ
∑
j≥1

jxj
/{

c +
∑
j≥0

xj
}

, i ≥ 0;

hosts are born free of parasites, so that βi(x) = 0 for i ≥ 1, and

β0(x) = β
∑
i≥0

xiξi,
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for some β > 0 and 0 ≤ ξ ≤ 1. Here, we can take b00 = b10 = 0,
b01(z) = b11(z) = β; but, for c > 0, we cannot improve substantially on the

choices

a00 = a10 = 0

a01(x, y) = a11(x, y) =
λ

c

{
|‖x‖11 − ‖y‖11|+ c−1(‖x‖11 ∧ ‖y‖11)|‖x‖1 − ‖y‖1|

}
,

and these do not yield a suitable bound for a01(x, y). If, however, we take
instead

αi,i+1(x) = λ
∑
j≥1

(j ∧M)xj
/{

c +
∑
j≥0

xj
}

, i ≥ 0,(2.15)

for any M < ∞, there is no problem in satisfying our conditions.

Remark. The assumptions made about the αij(x) and βi(x) have certain
general consequences. One is that the total number of hosts has to be

finite almost surely for all t. This can be seen by comparison with a pure
birth process, since the number of hosts ‖X‖1 only increases through

immigration, and the total rate of immigration N
∑

i≥0 βi(N−1X) does not
exceed Nb00 + b̃01(0)‖X‖1. Hence, for any T > 0,

lim
M→∞

P[ sup
0≤t≤T

‖XN (t)‖1 > NM ] = 0.(2.16)

Now, if N−1‖X‖1 ≤ M , it follows from (2.5) and (2.6) that∑
l≥0

αil(N−1X) ≤ a00 + ã01(0)M,

for all i ≥ 0. Hence, and because W is non-explosive, it follows that, on
the event {sup0≤t≤T ‖XN (t)‖1 ≤ NM}, the X-chain makes a.s. only

finitely many transitions in [0, T ]. Letting M →∞, it follows from (2.16)
that a.s. only finitely many transitions can occur in the X-chain in any

finite time interval.

3 The differential equations

We assume deterministic initial conditions XN (0) for each N . Our aim is
to approximate the evolution of the process N−1XN (t) when N is large. A
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natural candidate approximation is given by the solution to the ‘average
drift’ infinite dimensional differential equation

dxi(t)
dt

=
∑
l≥0

xl(t)µ(l, i) +
∑
l 6=i

xl(t)αli(x(t))− xi(t)
∑
l 6=i

αil(x(t))

+ βi(x(t))− xi(t)δi(x(t)), i ≥ 0,(3.1)

with initial condition x(0) = N−1XN (0); for the time being, we suppress
the N -dependence in x. We shall see shortly that this differential equation
has a unique ‘mild’ solution x = (xi(t), i ≥ 0) in some bounded t-interval
(see (3.6) below). We are then able to show that x is in fact a ‘classical’

solution to (3.1), in the usual sense.
Note that, in contrast to the stochastic model, it is not perhaps immediate

that a solution x(t) to these equations has to belong to the nonnegative
cone. To accommodate this possibility, we extend the definitions of αil, βi

and δi, setting

αil(x) = αil(x+), βi(x) = βi(x+), δi(x) = δi(x+),

where xi
+ := max(xi, 0), i ≥ 0, and observing that conditions (2.5) – (2.14)

are still satisfied, with x and y replaced by x+ and y+, respectively, as
arguments of a01, a11, b01, b11 and d1.

Equation (3.1), as in Arrigoni (2003), can be compactly expressed in the
form

dx

dt
= Ax + F (x), x(0) = N−1XN (0),(3.2)

where A is a linear operator given by

(Ax)i =
∑
l≥0

xlµ(l, i), i ≥ 0,(3.3)

and F is an operator given by

F (x)i =
∑
l 6=i

xlαli(x)− xi
∑
l 6=i

αil(x) + βi(x)− xiδi(x), i ≥ 0.(3.4)

This representation is crucial to establishing the existence and uniqueness
of the solution x.

The matrix of the adjoint A∗ of A is easily seen to be the infinitesimal
matrix µ, so that A∗ is the generator of a non-explosive pure-jump Markov
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chain on the countable set Z+ ∪∆. Standard theory implies that A∗

corresponds to a Feller, and hence strongly continuous (Kallenberg 2002,
Theorem 19.6) semigroup on the Banach space C0(Z+) of all sequences
x = (xi : i ∈ Z+) such that xi → 0 as i →∞, endowed with supremum

norm, that is ‖x‖∞= supi |xi|. See, for example, Kallenberg (2002,
Theorem 12.22 and Proposition 19.2, together with the remarks following
the theorem, and the definition of a Feller semigroup on p. 369). See also
Ethier and Kurtz (1986, Chapter 4, Theorem 2.2) or Norris (1997, Section

2.8).
We may now apply the following theorem.

Theorem 3.1 (Pazy 1983, Theorem 10.4, Chapter 1) Let T (t) be a
C0 (i.e. strongly continuous) semigroup on S with infinitesimal generator A
and let T (t)∗ be its adjoint semigroup. If A∗ is the adjoint of A and D(A∗)
is the closure of D(A∗) in the dual space S∗, then the restriction T (t)+ of
T (t)∗ to D(A∗) is a C0 semigroup on D(A∗). The infinitesimal generator
A+ of T (t)+ is the part of A∗ in D(A∗).

In the above theorem, given a linear operator in L and a subspace V of S,
the part of L in V is the operator L̃ defined by

D(L̃) = {x ∈ D(L) ∩ V : Lx ∈ V }.
In our case, S = C0(Z+) and its dual S∗ can be identified with the

space `1. For the adjoint µ∗ of the infinitesimal matrix µ, the closure of
D(µ∗) is precisely equal to S∗. This is because every sequence x such that
‖x‖1 < ∞ can be approximated by sequences with bounded support, which
are all in the domain of µ∗ since µ(i) < ∞ for each i, so D(A) is dense in

S∗. Further, it is easily checked that the domain of the infinitesimal
generator A+ contains the set of all sequences x ∈ S∗ such that

|x0|+
∑

i≥1(µ(i) + δ̄i)|xi| < ∞.
It follows that our operator A generates a strongly continuous semigroup

on the Banach space `1 of real-valued sequences.
We shall further show that A in fact also generates a strongly continuous
semigroup T (t) on the Banach subspace `11 of `1. For this note that again
every sequence x such that ‖x‖11 < ∞ can be approximated by sequences
with bounded support, which are all in the domain of µ∗, so D(A) is dense
in `11. We need to check that T (t)`11 ⊆ `11, which is equivalent to checking

that for every sequence x with ‖x‖11 < ∞, we have ‖T (t)x‖11 < ∞.
Recalling that A corresponds to the adjoint of the semigroup P = (pij(t))
associated with W , we must show that for every x with ‖x‖11 < ∞, we
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have ‖xP (t)‖11 < ∞ for all times t; but this follows from (2.2), since

‖xP (t)‖11 =
∑
j≥0

(j+1)
∣∣∣∑
i≥0

xipij(t)
∣∣∣ ≤ ∑

i≥0

|xi|(i+1)ewt = ewt‖x‖11 < ∞.

(3.5)
Strong continuity also follows, since, for x ∈ `11,

lim
t↓0

‖xP (t)− x‖11

≤ lim
t↓0

∑
j≥0

(j + 1)

∑
i6=j

|xi|pij(t) + |xj |(1− pjj(t))


= lim

t↓0

∑
i≥0

|xi|{E0
i (W (t) + 1)− (i + 1)Pi[W (t) = i]}

+
∑
j≥0

(j + 1)|xj |(1− pjj(t))


→ 0,

by dominated convergence, since ‖x‖11 < ∞ and, by (2.2),

0 ≤ E0
i (W (t) + 1)− (i + 1)Pi[W (t) = i] ≤ (i + 1)ewt,

and finally, again by (2.2),

lim sup
t↓0

E0
i (W (t) + 1) ≤ lim

t↓0
(i + 1)ewt = i + 1;

lim inf
t↓0

E0
i (W (t) + 1) ≥ lim inf

t↓0

i∑
j=0

pij(t)(j + 1) = i + 1.

Now every solution x of (3.2) also satisfies the integral equation

x(t) = T (t)x(0) +
∫ t

0
T (t− s)F (x(s)) ds,(3.6)

where T (t) is the C0 semigroup generated by A. Conversely, a continuous
solution x of the integral equation (3.6) is called a mild solution of the

initial value problem (3.2). The following result guarantees the existence
and uniqueness of a mild solution of the problem (3.6) if F is Lipschitz.
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Theorem 3.2 (Pazy 1983, Theorem 1.4, Chapter 6) Let F : S → S
be locally Lipschitz continuous. If A is the infinitesimal generator of a C0

semigroup etA on S then for every x0 ∈ S there is a tmax ≤ ∞ such that
the initial value problem (3.6) has a unique mild solution x on [0, tmax).
Moreover, if tmax < ∞, then limt↑tmax ‖ x ‖= ∞.

Note that, as in Pazy (1983), Theorem 3.2 in fact holds more generally, for
a function F = F (t, u): [0,∞)× S → S, continuous in time t uniformly on

bounded intervals, and locally Lipschitz continuous in u.
We shall apply this theorem to our equation (3.2), with S the space `11. In
order to do so, we require F to be locally `11-Lipschitz continuous. This is

established as follows.

Lemma 3.3 The function F defined in (3.4) is locally Lipschitz continuous
in the `11-norm.

Proof. For x, y ≥ 0 such that ‖x‖11, ‖y‖11 ≤ M , using assumptions (2.5) –
(2.14), we have

‖F (x)− F (y)‖11

≤
∑
i≥0

(i + 1)
∑
l 6=i

|xlαli(x)− ylαli(y)|+
∑
i≥0

(i + 1)
∣∣∣xi

∑
l 6=i

αil(x)− yi
∑
l 6=i

αil(y)
∣∣∣

+
∑
i≥0

(i + 1)|βi(x)− βi(y)|+
∑
i≥0

(i + 1)|xiδi(x)− yiδi(y)|

≤
∑
l≥0

|xl − yl|
∑
i6=l

(i + 1)αli(x) +
∑
l≥0

yl
∑
i6=l

(i + 1)|αli(x)− αli(y)|

+
∑
i≥0

(i + 1)|xi − yi|
∑
l 6=i

αil(x) +
∑
i≥0

(i + 1)yi
∑
l 6=i

|αil(x)− αil(y)|

+ b11(x, y)‖x− y‖11 +
∑
i≥0

(i + 1)|xi − yi|δi(x) +
∑
i≥0

(i + 1)yi|δi(x)− δi(y)|

≤ {a10 + ã11(0)‖x‖11}‖x− y‖11 + ã11(M)‖x− y‖11‖y‖1

+ {a00 + ã01(0)‖x‖1}‖x− y‖11 + ã01(M)‖y‖11‖x− y‖1 + b̃11(M)‖x− y‖11

+ {d0 + d̃1(0)‖x‖1}‖x− y‖11 + d̃1(M)‖x− y‖1‖y‖11

≤ FM‖x− y‖11,

where

FM := a10 + ã11(0)M + Mã11(M) + a00 + ã01(0)M + Mã01(M)
+ b̃11(M) + d0 + d̃1(0)M + Md̃1(M).(3.7)
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Remark. It would naturally be good to have tmax = ∞. However, our
assumptions may not be enough to guarantee that this is true. On the

other hand, tmax = ∞ if, for some C < ∞,

‖F (x)‖11 ≤ C‖x‖11,(3.8)

with F (x) as given in (3.4). For then, from (3.5), we can bound
‖T (t)x‖11 ≤ ‖x‖11e

wt, where w > 0 is the constant in (2.2). And then,
from (3.6) and (3.5), it follows that

‖x(t)‖11 ≤ ‖x(0)‖11e
wt +

∫ t

0
C‖x(s)‖11e

w(t−s) ds,(3.9)

and Gronwall’s inequality then implies that ‖x(t)‖11 is bounded on finite
intervals, whereas, from Theorem 3.2, it converges to infinity as t → tmax if

the latter is finite. However, under the conditions of this paper, the
inequality (3.8) is not automatic.

The specific examples that we consider satisfy slightly stronger conditions,
which we can use to bound

‖F (x)‖11 =
∑
i≥0

(i + 1)|F (x)i|(3.10)

≤
∑
i≥0

(i + 1)
{∑

l≥0

xlαli(x) + xi
∑
l≥0

αil(x) + βi(x) + xiδi(x)
}

.

In all of them, we have supi≥0 δi(x) < ∞, uniformly in x, so that the last
term in (3.10) causes no problems. In Luchsinger’s non-linear model, the
βi(x) are all zero, as are the αij(x) for i ≥ 1, and it therefore remains to

check

x0
∑
i≥0

(i + 1)α0i(x) + x0
∑
l≥0

α0l(x),

bounded by λx0(max{θ, 1}‖x‖11 + ‖x‖1); furthermore, x0 remains bounded
by ‖x(0)‖1, so that (3.8) is satisfied and tmax = ∞. In Luchsinger’s linear

model, all the αij(x) are zero, and∑
i≥0

(i + 1)βi(x) ≤ λ max{θ, 1}‖x‖11,
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again satisfying (3.8). In Kretzschmar’s model, however, we only have the
bounds∑

i≥0

(i + 1)
∑
l≥0

xlαli(x) =
∑
i≥1

(i + 1)xi−1αi−1,i(x) ≤ 2λ‖x‖2
11/(c + ‖x‖1);∑

i≥0

(i + 1)xi
∑
l≥0

αil(x) =
∑
i≥0

(i + 1)xiαi,i+1(x) ≤ λ‖x‖2
11/(c + ‖x‖1),

and these are not enough for (3.8). However, if the infection rate is
truncated as in (2.15), there is no difficulty, and then tmax = ∞ once again.

The next lemma shows that the solution of (3.6) depends smoothly on the
initial conditions within the interval of existence. This is useful for

approximating our sequence of processes, when it will rarely be possible to
have the initial condition fixed for all N . Instead, we would typically have

N−1XN (0) → x(0) as N →∞, and approximation throughout by the
single solution x of (3.6) starting in x(0) might seem appropriate.

Lemma 3.4 Fix a solution x to the integral equation (3.6), and suppose
that T < tmax. Then there is an ε > 0 such that, if y is a solution with
initial condition y(0) satisfying ‖y − x‖11 ≤ ε, then

sup
0≤t≤T

‖x(t)− y(t)‖11 ≤ ‖x(0)− y(0)‖11CT ,

for a constant CT < ∞.

Proof. From the integral equation (3.6) together with (3.5), it follows
that, if ‖x(0)− y(0)‖11 ≤ ε, then, as in (3.9),

‖x(t)− y(t)‖11 ≤ εewt +
∫ t

0
F2MT

‖x(s)− y(s)‖11e
w(t−s) ds,

where FM is defined in (3.7) and

MT := sup
0≤t≤T

‖x(t)‖11,

provided also that sup0≤t≤T ‖y(t)‖11 ≤ 2MT . Again by Gronwall’s
inequality, it then follows that

sup
0≤t≤T

‖x(t)− y(t)‖11 ≤ ‖x(0)− y(0)‖11CT ≤ εCT ,
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for a constant CT < ∞. This implies that sup0≤t≤T ‖y(t)‖11 ≤ 2MT is
indeed satisfied if ε < MT /CT , and the lemma follows.

Let xN denote the solution starting with xN (0) = N−1XN (0) and x that
starting with x(0). It follows that, if ‖xN (0)− x(0)‖11 → 0, then for all N

large enough∣∣∣ sup
0≤t≤T

‖xN (t)‖11 −MT

∣∣∣ ≤ ‖xN (0)− x(0)‖11CT ,(3.11)

provided that T < tmax. In particular, if tNmax denotes the maximum time
such that xN is uniquely defined on [0, tNmax), then lim infN→∞ tNmax ≥ tmax.

4 The independent sum approximation

Our aim is to prove the following quantitative law of large numbers for
N−1XN . As before, we write xN for the solution to (3.6) with initial

condition N−1XN (0), and x for the solution starting at x(0).

Theorem 4.1 Suppose that (2.2)–(2.14) hold, and that xN (0) := N−1XN (0)
satisfies ‖xN (0)− x(0)‖11 → 0 as N →∞. Then, for any 1/2 < γ ≤ 1, and
for any T < tmax, there exists a constant Kγ(T ) such that, as N →∞,

P[N−1 sup
0≤t≤T

‖XN (t)−NxN (t)‖1 > Kγ(T )Nγ−1 log N ] = O(N−γ).

If also ‖xN (0) − x(0)‖11 = O(Nγ−1), then xN can be replaced by x in the
statement, without altering the order of the approximation.

Instead of embarking on a direct proof, we first consider an approximating
model X̃N (·), starting with X̃N (0) = XN (0), and consisting of independent

individuals. Each individual’s parasite load evolves according to a time
inhomogeneous Markov process W̃ on Z+ ∪∆ with infinitesimal matrix

defined by

qlj(t) = µ(l, j) + ãlj(t), j 6= l,∆, l ≥ 0,

qll(t) = −
∑
j 6=l

qlj(t)− δ̄l − d̃l(t), l ≥ 0,(4.1)

ql∆(t) = δ̄l + d̃l(t), l ≥ 0,

where

ãil(t) := αil(xN (t)); d̃i(t) := δi(xN (t));(4.2)
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and, for i, j ∈ Z+ ∪∆, we shall write

p̃ij(s, t) := P[W̃ (t) = j | W̃ (s) = i], s < t.(4.3)

In addition, individuals may immigrate, with rates

Nb̃i(t) := Nβi(xN (t)).(4.4)

The process X̃N differs from XN in having the non-linear elements of the
transition rates made linear, by replacing the Lipschitz state–dependent
elements αij(x), βi(x) and δi(x) at any time t by their ‘typical’ values

ãij(t), b̃i(t) and d̃i(t). Our strategy will be first to show that the process
X̃N stays close to the deterministic process NxN (t) with high probability,
and then to show that, if this is the case, then XN also stays close to X̃N ,
again with high probability. However, we shall first use the process X̃N to

improve our knowledge about the weak solution x to (3.2).
Let us start by introducing some further notation. Fixing T < tmax, define

MT := MT (x) := sup
0≤t≤T

∑
i≥1

(i + 1)|xi(t)|;(4.5)

GT (γ) := GT (γ, x) := sup
0≤t≤T

∑
i≥0

|xi(t)|γ , 1/2 ≤ γ ≤ 1,(4.6)

and write MN
T := MT (xN ), GN

T (γ) := GT (γ, xN ). Note that MT is finite
if x(0) ∈ `11, because the mild solution x is `11-continuous, and that

MT ≥ 1 and GT (γ) ≥ 1 for all 1/2 < γ ≤ 1 whenever ‖x(0)‖1 = 1, as is
always the case here.

It is immediate from Lemma 3.4 that if ‖xN (0)− x(0)‖11 → 0, then
MN

T ≤ MT + 1 for all N large enough. Furthermore,∑
i≥|xi|γ−1

|xi|γ ≤
∑

i≥|xi|γ−1

i|xi|,

whereas∑
i<|xi|γ−1

|xi|γ ≤
∑

i<|xi|γ−1

i−γ/(1−γ) =: cγ < ∞,

this last provided that γ > 1/2. Replacing x by x(t) in the above thus
shows that

GT (γ) ≤ MT + cγ ≤ (cγ + 1)MT < ∞(4.7)
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for all 1/2 < γ ≤ 1. Hence, using also dominated convergence, we deduce
that GN

T (γ) ≤ GT (γ) + 1 for all N sufficiently large.
Our first result of the section controls the mean of the process N−1X̃N in

the `11-norm.

Lemma 4.2 Under Conditions (2.2)–(2.14), for any XN (0) in `11 and for
any T < tNmax, we have

sup
0≤t≤T

N−1
∑
l≥0

(l + 1)EX̃ l
N (t)

≤ {N−1‖XN (0)‖11 + T (b00 + b̃01(0)GN
T (1)}e(w+aN

0 +aN
1 MN

T )T < ∞,

where w is as in Assumption (2.2), aN
0 := a10 − a00 and aN

1 := a11 − a01.

Proof. Neglecting the individuals in the cemetery state ∆, the process X̃N

can be represented by setting

X̃N (t) =
∑
i≥0

Xi
N (0)∑
j=1

e(W̃ij(t)) +
∑
i≥0

Ri(t)∑
j=1

e(W̃ ′
ij(t− τij)),(4.8)

where W̃ij and W̃ ′
ij , i ≥ 0, j ≥ 1, are independent copies of W̃ , with W̃ij

and W̃ ′
ij starting at i, and the τij , j ≥ 1, are the successive event times of

independent time inhomogeneous Poisson (counting) processes Ri with
rates Nb̃i(t), which are also independent of all the W̃ij and W̃ ′

ij ; as usual,
e(l) denotes the l-th co-ordinate vector. Hence it follows that, given XN (0),∑

l≥0

(l + 1)EX̃ l
N (t)

=
∑
i≥0

{
Xi

N (0)E0
i {W̃ (t) + 1}+ N

∫ t

0
b̃i(u)E0

i {W̃ (t− u) + 1} du
}

.

where E0
i is as defined for (2.2).

Now W̃ has paths which are piecewise paths of W , but with extra killing
because of the d̃i(u) components of the rates, and with sporadic jumps
because of the ãij(u) components. The killing we can neglect, since it

serves only to reduce E0
i W̃ (t). For the remainder, by Assumptions (2.5)

and (2.6), the rate of occurrence is at most χ := {a00 + ã01(0)GN
T (1)},

irrespective of state and time. So, defining

cij(u) := ãij(u)/χ, i, j ≥ 0, j 6= i;

cii(u) := 1−
∑
j 6=i

cij(u), i ≥ 0,
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we can construct the α-jumps by taking them to occur at the event times
of a Poisson process R of rate χ, with jump distribution for a jump at
time u given by ci·(u) if W̃ (u−) = i. Note that, in this case, no jump is
realized with probability cii(u). Conditional on R having events at times

0 < t1 < · · · < tr < t between 0 and t, we thus have

E0
i {W̃ (t) + 1 | t1, . . . , tr}

≤
∑
j1≥0

pij1(t1)
∑
l1≥0

cj1l1(t1)
∑
j2≥0

pl1j2(t2 − t1)
∑
l2≥0

cj2l2(t2) . . .

. . .
∑
jr≥0

plr−1jr(tr − tr−1)
∑
lr≥0

cjrlr(tr)
∑
j≥0

(j + 1)plrj(t− tr),

where, as before, pij(t) = P[W (t) = j |W (0) = i]. Applying Assumptions
(2.2), (2.7) and (2.8) to the last two sums, we have∑

lr≥0

cjrlr(tr)
∑
j≥0

(j + 1)plrj(t− tr) ≤
∑
lr≥0

cjrlr(tr)(lr + 1)ew(t−tr)

≤ aN
3 (jr + 1)ew(t−tr),

where aN
3 := {a10 + ã11(0)MN

T }/χ. It thus follows that

E0
i {W̃ (t) + 1 | t1, . . . , tr} ≤ aN

3 E0
i {W̃ (tr) + 1 | t1, . . . , tr−1}ew(t−tr).

Arguing inductively, this implies that

E0
i {W̃ (t) + 1 | t1, . . . , tr} ≤ (i + 1){aN

3 }rewt,

and hence, unconditionally, that

E0
i {W̃ (t) + 1} ≤ (i + 1)ewtE{(aN

3 )R(t)}
≤ (i + 1) exp{(w + (aN

3 − 1)χ)t}.(4.9)

The remainder of the proof is immediate.

Armed with this estimate, we can now proceed to identify N−1EX̃N (t)
with xN (t), at the same time proving that the mild solution xN is in fact a

classical solution to the infinite differential equation (3.1) with initial
condition N−1XN (0).

First, define the ‘linearized’ version of (3.1):

dyi(t)
dt

=
∑
l≥1

yl(t)µ(l, i) +
∑
l≥0

yl(t)ãli(t)− yi(t)
∑
l≥0

ãil(t)

+ b̃i(t)− yi(t)d̃i(t), i ≥ 0,(4.10)
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where ã, b̃ and d̃ are as in (4.2) and (4.4), to be solved in t ∈ [0, T ] for an
unknown function y. Clearly these equations have xN itself as a mild
solution, and, by the remark following Lemma 3.2, the mild solution is

unique under our assumptions, since now

F̃ (t, u)i :=
∑
l≥0

ulãli(t)− ui
∑
l≥0

ãil(t) + b̃i(t)− uid̃i(t)

is `11 locally Lipschitz in u ∈ S with constant
a00 + a10 + d0 + MN

T {ã01(0) + ã11(0) + d̃1(0)}, and

‖F̃ (s, u)− F̃ (t, u)‖11

≤ (MN
T {ã11(MN

T ) + ã01(MN
T ) + d̃1(MN

T )}+ b̃11(MN
T ))‖xN (s)− xN (t)‖11,

whenever ‖u‖11 ≤ MN
T , so that the t-uniform continuity of F̃ on compact

time intervals (contained in [0, tNmax)) follows from that of xN . We now
show that y(t) = N−1EX̃N (t) solves (4.10), and indeed as a classical

solution. Since it also therefore solves (3.6), and since this equation has a
unique solution, it follows that y is the same as xN , and that it is the
classical solution to equation (3.1) with initial condition N−1XN (0).

Theorem 4.3 Under Conditions (2.2)–(2.14), for any fixed XN (0) ∈ `11,
the function y(t) := N−1EX̃N (t) satisfies the system (4.10) with initial con-
dition N−1XN (0) on any interval [0, T ] with T < tNmax. It is hence the
unique classical solution xN to (3.1) for this initial condition.

Proof. Let X̃j
N1(t) denote the number of particles present at time 0 that

are still present and in state j at time t; let X̃j
N2(t) denote the number of

particles that immigrated after time 0 and are present and in state j at
time t. Then

E X̃j
N (t) = E X̃j

N1(t) + E X̃j
N2(t)

=
∑
i≥0

Xi
N (0)p̃ij(0, t) + N

∫ t

0

∑
i≥0

b̃i(u)p̃ij(u, t) du,(4.11)

where p̃ij(u, v) is as defined in (4.3). Note that the expectations are finite,
since, from Conditions (2.9) and (2.10), uniformly in u ∈ [0, T ],∑

i≥0

b̃i(u) ≤ b00 + b̃01(0)GN
T (1) < ∞;(4.12)
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here, we have used the fact that, by the subadditivity of the function xγ in
x ≥ 0, GT (1) ≤ GT (γ)1/γ < ∞. Then, defining qjl(t) as in (4.1), it follows
for each j ≥ 0 that the quantities qj(t) := −qjj(t) are bounded, uniformly

in t, since by Conditions (2.13), (2.14) (2.5) and (2.6),

d̃j(t) ≤ d0 + d̃1(0)GN
T (1);

∑
l≥0

ãjl(t) ≤ a00 + ã01(0)MN
T ,(4.13)

and since µ(j) =
∑

l 6=j µ(l, j) is finite. Note further that, from the forward
equations,

∂

∂t
p̃ij(u, t) =

∑
l≥0

p̃il(u, t)qlj(t);

see Iosifescu & Tautu (1973, Corollary to Theorem 2.3.8, p. 214).
Now we have

E X̃j
N1(t) =

∑
i≥0

Xi
N (0)p̃ij(0, t)

= Xj
N (0) +

∑
i≥0

Xi
N (0)

∫ t

0

∑
l≥0

p̃il(0, u)qlj(u) du

= Xj
N (0) +

∫ t

0

∑
l≥0

E X̃ l
N1(u)qlj(u) du,(4.14)

with no problems about reordering, because of the uniform boundedness
discussed above, and since only one of the qlj is negative. Then also, with

rearrangements similarly justified, we define

Qt := N

∫ t

0

{∫ v

0

∑
i≥0

b̃i(u)
∑
l≥0

p̃il(u, v)qlj(v) du
}

du;

taking the i-sum first, and then the u-integral, we obtain

Qt =
∫ t

0

∑
l≥0

E X̃ l
N2(v)qlj(v) dv;

taking the l-sum first, we have

Qt = N

∫ t

0

{∫ t

0

∑
i≥0

b̃i(u)
∂

∂v
p̃ij(u, v)1[0,v](u) du

}
dv

= N

∫ t

0

∑
i≥0

b̃i(u){p̃ij(u, t)− p̃ij(u, u)} du

= E X̃j
N2(t)−N

∫ t

0
b̃j(u) du.
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From these two representations of Qt, it follows that

E X̃j
N2(t) =

∫ t

0

{
Nb̃j(u) +

∑
l≥0

E X̃ l
N2(u)qlj(u)

}
du;(4.15)

combining (4.14) and (4.15), we thus have

N−1E X̃j
N (t)

= N−1Xj
N (0) +

∫ t

0

{
b̃j(u) +

∑
l≥0

N−1E X̃ l
N (u)qlj(u)

}
du.(4.16)

Since the right hand side is an indefinite integral up to t, it follows that
N−1E X̃j

N (t) is continuous in t, for each j. The quantities qjl(t) are all
continuous, because xN is `11-continuous in t and the αil(x) and δl(x) are

`11-Lipschitz, and also, for qll(t), from assumption (2.6). Then, from
Lemma 4.2, we also have∑

j≥J

E X̃j
N (t) ≤ (J + 1)−1{‖XN (0)‖11 + NTb00G

N
T (1)}e(w+aN

0 +aN
1 MN

T )T ,

so that, in view of assumption (2.4) and of (4.13), the sum on the right
hand side of (4.16) is uniformly convergent, and its sum continuous.

Hence (4.16) can be differentiated with respect to t to recover the system
(4.10), proving the theorem.

Our next result shows that, under appropriate conditions, N−1X̃N (t)
and x(t) are close in `1-norm at any fixed t, with very high probability.

Lemma 4.4 Suppose that Conditions (2.2)–(2.14) are satisfied, and that
XN (0) ∈ `11. Then, for any t ∈ [0, T ] with T < tNmax and any γ ∈ (1/2, 1],

E‖X̃N (t)−NxN (t)‖1 ≤ 3NγGN
T (γ).

Furthermore, for any r > 0, there exist constants K
(1)
r > 1 and K

(2)
r such

that

P[‖X̃N (t)−NxN (t)‖1 > K(1)
r GN

T (γ)Nγ log N ] ≤ K(2)
r GN

T (1)N−r.

Proof. For a sum W of independent indicator random variables with
mean M , and for any δ > 0, the Chernoff inequalities give

max{P[W > M(1 + δ)],P[W < M(1− δ)]}
≤ exp{−Mδ2/(2 + δ)}.(4.17)
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Now the quantity X̃j(t) can be expressed as a sum of independent indicator
random variables Y j

1 , . . . , Y j
N , where Y j

k is the indicator of the event that
the k-th initial individual is in state j at time t, and an independent

Poisson random variable Y ′ with mean N
∫ t
0

∑
i≥0 βi(s)p̃ij(s, t) ds. Hence

E|X̃i
N (t)−Nxi

N (t)| ≤
√

Nxi
N (t) ∧ {2Nxi

N (t)},(4.18)

and, by (4.17), for any a ≥ 2 and N ≥ 3,

P[|X̃i
N (t)−Nxi

N (t)| > a
√

Nxi
N (t) log N ] ≤ 2N−a/2,

so long as Nxi
N (t) ≥ 1.

Let IN (t) := {i:xi
N (t) ≥ 1/N}. Then, recalling that we need γ > 1/2 to be

sure that GN
T (γ) < ∞, we have∑

i∈IN (t)

E|X̃i
N (t)−Nxi

N (t)| ≤
∑

i∈I(t)

√
Nxi

N (t)

≤
∑
i≥0

{Nxi
N (t)}γ = NγGN

T (γ).(4.19)

Furthermore, |IN (t)| ≤ NGN
T (1), so that, if

BN (t) :=
⋂

i∈IN (t)

{|X̃i
N (t)−Nxi

N (t)| ≤ a
√

Nxi
N (t) log N},

then

P[BC
N (t)] ≤ 2GN

T (1)N1−a/2,(4.20)

whereas, on the event BN (t), arguing as above, we have∑
i∈IN (t)

|X̃i
N (t)−Nxi

N (t)| ≤ a log N
∑

i∈I(t)

√
Nxi

N (t)

≤ a log N NγGN
T (γ).(4.21)

For the remaining indices, we first have∑
i/∈IN (t)

Nxi
N (t) ≤

∑
i/∈IN (t)

N{xi
N (t)}γ Nγ−1 ≤ NγGN

T (γ),(4.22)
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from which, with (4.18) and (4.19), it follows that

E‖X̃N (t)−NxN (t)‖1 =
∑
i≥0

E|X̃i
N (t)−Nxi

N (t)| ≤ 3NγGN
T (γ),

proving the first part of the lemma. Then SN (t) :=
∑

i/∈IN (t) X̃i
N (t) is also

a sum of many independent indicator random variables plus an
independent Poisson component. Using (4.17), we thus have

P
[
SN (t) >

∑
i/∈IN (t)

Nxi
N (t)+NγGN

T (γ)
]
≤ exp{−NγGN

T (γ)/3} ≤ exp{−Nγ/3},

(4.23)
since δ := NγGN

T (γ)/
∑

i/∈IN (t) Nxi
N (t) ≥ 1 from (4.22); otherwise, we have∑

i/∈IN (t)

X̃i
N (t) ≤ 2NγGN

T (γ).(4.24)

Now, fixing any r > 0 and taking a = 2(r + 1), the second part of the
lemma follows from (4.20) – (4.24).

The next lemma is used to control the fluctuations of X̃N between close
time points. We define the quantity

HN
T := 2m2−1m1 + {b00 + a00 + b̃01(0) + d0 + GN

T (1)(ã01(0) + d̃1(0))}/dNMN
T e

m2−1

≥ 1,

which will be used as part of an upper bound for the transition rates of the
process X̃N on [0, T ].

Lemma 4.5 Suppose that Conditions (2.2)–(2.14) are satisfied. Then, if
h ≤ 1/(2dNMN

T e
m2HN

T ), t ≤ T−h, and if ‖X̃N (t)−NxN (t)‖1 ≤ KNγ log N ,
it follows that

P
[

sup
0≤u≤h

‖X̃N (t + u)− X̃N (t)‖1 > KNγ log N + a log N
]
≤ N−a/6,

for any a ≥ 2 and N ≥ 3.

Proof. At time t, there are ‖X̃N (t)‖1 individuals in the system, each of
which evolves independently of the others over the interval s ∈ [t, t + h]; in
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addition, new immigrants may arrive. During the interval [t, t + h], an
individual in state i ≥ 0 at time t has probability

exp
{
−

(
h(µ(i) + δ̄i) +

∫ h

0
δi(x(t + u)) du +

∫ h

0

∑
l 6=i

αil(x(t + u)) du
)}

of not changing state; and the expected number of immigrants is Poisson
distributed with mean

N
∑
i≥0

∫ h

0
βi(x(t + u)) du.

Now consider the total number R(t, h) of individuals that change state
during the interval [t, t + h]. For each i ≥ 0, the individuals in state i at
time t can be split into two groups, the first containing X̃i

N (t) ∧Nxi
N (t)

randomly chosen individuals, and the second containing the remainder.
Adding over i, the numbers in the second group add up to at most

KNγ log N , by assumption, whereas, from the observations above, the
mean number of individuals who change state in the first group is at most

2dNMN
T e−1∑

i=0

hNxi
N (t)m1(i + 1)m2 +

∑
i≥2dNMN

T e

Nxi
N (t) +

∑
i≥0

hNxi
N (t){d0 + d̃1(0)GN

T (1)}

+
∑
i≥0

hNxi
N (t){a00 + ã01(0)GN

T (1)}+ hN{b00 + b̃01(0)GN
T (1)}

≤ hNMN
T m1{2dNMN

T e}m2−1 +
1
2

+ hN{b00 + GN
T (1)(d0 + a00 + b̃01(0)) + [GN

T (1)]2(d̃1(0) + ã01(0))}(4.25)

≤ 1
2

+ hdNMN
T e

m2
HN

T ≤ 1,

from (2.3) and (2.5) – (2.14), and with the last inequality by the
assumption on h. Applying the Chernoff bounds (4.17), the probability
that more than a log N ≥ 2 individuals in the first group change state is

thus at most N−a/6, implying in sum that

P[R(t, h) ≥ KNγ log N + a log N ] ≤ N−a/6.

Since sup0≤u≤h ‖X̃N (t + u)− X̃N (t)‖1 ≤ R(t, h), the lemma follows.

We are now in a position to prove the main result of the section, showing
that the independent sum process N−1X̃N is a good approximation to xN ,

uniformly in [0, T ].
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Theorem 4.6 Under Conditions (2.2)–(2.14), and for T < tNmax, there exist
constants K

(3)
r ,K

(4)
r < ∞ such that for N large enough

P[ sup
0≤t≤T

‖N−1X̃N (t)−xN (t)‖1 > K(4)
r (MN

T )2Nγ−1 log N ] ≤ K(3)
r (MN

T )m2+1N−r.

Proof. Divide the interval [0, T ] into d2T dNMN
T e

m2HN
T e intervals [tl, tl+1]

of lengths hl = tl+1 − tl ≤ 1/(2dNMN
T e

m2HN
T ). Apply Lemma 4.4 with

r + m2 for r and with t = tl for each l, and apply Lemma 4.5 with
a = 6(r + m2) and with t = tl and h = hl for each l; except on a set of

probability at most

d2T dNMN
T e

m2
HN

T e(K
(2)
r+m2

GN
T (1)N−r−m2 + N−r−m2),

we have

sup
0≤t≤T

‖N−1X̃N (t)− xN (t)‖1

≤ 2K
(1)
r+m2

GN
T (γ)Nγ−1 log N + 6(r + m2)N−1 log N

+ sup
0≤s,t≤T ;|s−t|≤1/(2dNMN

T em2HN
T )

‖xN (s)− xN (t)‖1.(4.26)

Now, since xN satisfies (3.6), it follows that, for 0 ≤ u ≤ h,

‖xN (t+u)−xN (t)‖1 ≤ ‖xN (t)P (u)−xN (t)‖1+
∫ u

0
‖F (xN (t+v))P (h−v)‖1 dv.

By (3.5), we have

‖F (xN (t + v))P (h− v)‖11 ≤ ewu‖F (xN (t + v))‖11 ≤ ewhMN
T FMN

T
,

the last inequality following from Lemma 3.3, so that therefore∫ u

0
‖F (xN (t + v))P (h− v)‖1 dv ≤ hewhMN

T FMN
T

.

Then

‖xN (t)P (u)− xN (t)‖1 ≤ 2
∑
j≥0

|xj
N (t)|(1− pjj(u)),

and, by part of the calculation in (4.25), we find that

∑
j≥0

|xj
N (t)|(1− pjj(u)) ≤ u

2dNMN
T e−1∑

j=0

|xj
N (t)|m1(j + 1)m2 +

∑
j≥2dNMN

T e

|xj
N (t)|

≤ hm1(2dNMN
T e

m2−1
)MN

T +
1

2N
,
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which is at most 1/N if h ≤ 1/(2dNMN
T e

m2HN
T ).

Hence, using also (3.7) and the fact that m2 ≥ 1, the third term in (4.26)
is of order (MN

T )2N−1 under the conditions of the theorem, and the result
follows from (4.7).

5 The main approximation

We now turn to estimating the deviations of the process X̃N from the
actual process XN of interest. We do so by coupling the processes in such
a way that the “distance” between them cannot increase too much over

any finite time interval. In our coupling, we pair each individual in
state i ≥ 1 in XN (0) with a corresponding individual in state i in X̃N (0) so

that all their µ- and δ̄-transitions are identical. This process entails an
implicit labelling, which we suppress from the notation. Now the

remaining transitions have rates which are not quite the same in the two
processes, and hence the two can gradually drift apart. Our strategy is to
make their transitions identical as far as we can, but, once a transition in

one process is not matched in the other, the individuals are decoupled
thereafter. For our purposes, it is simply enough to show that the number
of decoupled pairs is small enough; what pairs of states these individuals

occupy is immaterial.
We realize the coupling between XN and X̃N in terms of a four component

process Z(·) with

Z(t) = ((Zi
l (t), i ≥ 0, 1 ≤ l ≤ 3), Z4(t)) ∈ X 3 × Z+,

constructed in such a way that we can define XN (·) = Z1(·) + Z2(·) and
X̃N (·) = Z1(·) + Z3(·), and starting with Z1(0) = XN (0) = X̃N (0),

Z2(0) = Z3(0) = 0 ∈ X , and Z4(0) = 0. The component Z4 is used only to
keep count of certain uncoupled individuals; either unmatched

Z2-immigrants, or Z3 individuals that die, or Z2 individuals created at the
death of (one member of) a coupled pair. The transition rates of Z are
given as follows, using the notation el(i) for the ith coordinate vector in

the lth copy of X , and writing X = Z1 + Z2. For the µ- and α-transitions,
at time t and for any i 6= l, we have

Z → Z + (e1(l)− e1(i)) at rate Zi
1{µ(i, l) + (αil(N−1X) ∧ αil(xN (t)))};

Z → Z + (e2(l) + e3(i)− e1(i)) at rate Zi
1{αil(N−1X)− αil(xN (t))}+;

Z → Z + (e2(i) + e3(l)− e1(i)) at rate Zi
1{αil(N−1X)− αil(xN (t))}−;
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Z → Z + (e2(l)− e2(i)) at rate Zi
2{µ(i, l) + αil(N−1X)};

Z → Z + (e3(l)− e3(i)) at rate Zi
3{µ(i, l) + αil(xN (t))},

with possibilities for individuals in the two processes to become uncoupled,
when N−1X 6= x(t). For the immigration transitions, we have

Z → Z + e1(i) at rate N{βi(N−1X) ∧ βi(xN (t))}, i ≥ 0;
Z → Z + e2(i) + e4 at rate N{βi(N−1X)− βi(xN (t))}+, i ≥ 0;
Z → Z + e3(i) at rate N{βi(N−1X)− βi(xN (t))}−, i ≥ 0,

with some immigrations not being precisely matched; the second transition
includes an e4 to ensure that each individual in Z2 has a counterpart in

either Z3 or Z4. For the deaths, we have

Z → Z − e1(i) at rate Zi
1{δ̄i + (δi(N−1X) ∧ δi(xN (t)))}, i ≥ 0;

Z → Z − e1(i) + e3(i) at rate Zi
1{δi(N−1X)− δi(xN (t))}+, i ≥ 0;

Z → Z − e1(i) + e2(i) + e4 at rate Zi
1{δi(N−1X)− δi(xN (t))}−, i ≥ 0;

Z → Z − e2(i) at rate Zi
2{δ̄i + δi(N−1X)}, i ≥ 0;

Z → Z − e3(i) + e4 at rate Zi
3{δ̄i + δi(xN (t))}, i ≥ 0,

where Z4(·) is also used to count the deaths of uncoupled Z3-individuals,
and uncoupled deaths in X̃N of coupled Z1 individuals. With this joint

construction, we have arranged that∑
i≥0

Zi
2(t) ≤ Z4(t) +

∑
i≥0

Zi
3(t)(5.1)

for all t, and that

VN (t) := Z4(t) +
∑
i≥0

Zi
3(t)(5.2)

is a counting process. We allow unmatched deaths in the Z2-process. We
thus have the bound

‖XN (t)− X̃N (t)‖1 = ‖(Z1(t) + Z2(t))− (Z1(t) + Z3(t))‖1

≤
∑
i≥0

{Zi
2(t) + Zi

3(t)} ≤ 2

Z4(t) +
∑
i≥0

Z3(t)

 = 2VN (t),(5.3)

for all t, by (5.1).
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Now VN has a compensator AN with intensity aN , satisfying

aN (t) =
∑
i≥0

Zi
1(t)

∑
l≥0

|αil(N−1XN (t))− αil(xN (t))|

+ N
∑
i≥0

|βi(N−1XN (t))− βi(xN (t))|+
∑
i≥0

Zi
1(t)|δi(N−1XN (t))− δi(xN (t))|

≤
∑
i≥0

X̃i
N (t)

∑
l≥0

|αil(N−1XN (t))− αil(xN (t))|

+ N
∑
i≥0

|βi(N−1XN (t))− βi(xN (t))|+
∑
i≥0

X̃i
N (t)|δi(N−1XN (t))− δi(xN (t))|.

Now, Condition (2.6) implies that, uniformly in i,∑
l≥0

|αil(N−1XN (t))− αil(xN (t))| ≤ ã01(‖xN (t)‖11)‖N−1XN (t)− xN (t)‖1.

Hence,

N−1aN (t)

≤
(∑

i≥0

xi
N (t)ã01(MN

T ) + b̃01(MN
T ) +

∑
i≥0

xi
N (t)d̃1(MN

T )
)
‖N−1XN (t)− xN (t)‖1

+ ‖N−1X̃N (t)− xN (t)‖1

(
ã01(MN

T ) + d̃1(MN
T )

)
‖N−1XN (t)− xN (t)‖1

≤ {H(1,N)
T + H

(2,N)
T ‖N−1X̃N (t)− xN (t)‖1}‖N−1XN (t)− xN (t)‖1,

where

H
(1,N)
T = GN

T (1)ã01(MN
T ) + b̃01(MN

T ) + GN
T (1)d̃1(MN

T );

H
(2,N)
T = ã01(MN

T ) + d̃1(MN
T ).

In particular, defining

τN := inf{t ≥ 0 : ‖N−1X̃N (t)− xN (t)‖1 ≥ 1},

it follows that

N−1aN (t ∧ τN )

≤ {H(1,N)
T + H

(2,N)
T }‖N−1XN (t ∧ τN )− xN (t ∧ τN )‖1.(5.4)

For the next two lemmas, we shall restrict the range of N in a way that is
asymptotically unimportant. We shall suppose that N satisfies the

inequalities

K(4)
r0

(MN
T )2Nγ−1 log N ≤ 1; N > {K(3)

r0
}1/(m2+1)MN

T ,(5.5)
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where r0 = m2 + 2, and the quantities K
(3)
r and K

(4)
r are as for

Theorem 4.6.

Lemma 5.1 Under Conditions (2.2)–(2.14), for any t ∈ [0, T ] and 1/2 <
γ ≤ 1, and for all N satisfying (5.5), we have

N−1E‖XN (t ∧ τN )− X̃N (t ∧ τN )‖1

≤ 8Nγ−1GN
T (γ) t(H(1,N)

T + H
(2,N)
T ) exp{t(H(1,N)

T + H
(2,N)
T )}.

Proof. Write MN (·) = VN (·)−AN (·) for the martingale part of VN . Then,
because also

‖N−1XN (t)−xN (t)‖1 ≤ ‖N−1XN (t)−N−1X̃N (t)‖1+‖N−1X̃N (t)−xN (t)‖1,
(5.6)

and using (5.4), we have

(2N)−1‖XN (t ∧ τN )− X̃N (t ∧ τN )‖1

≤ N−1V (t ∧ τN )
≤ N−1MN (t ∧ τN )

+
∫ t∧τN

0
{H(1,N)

T + H
(2,N)
T }{N−1‖XN (s ∧ τN )− X̃N (s ∧ τN )‖1

+ ‖N−1X̃N (s ∧ τN )− xN (s ∧ τN )‖1} ds

≤ N−1MN (t ∧ τN )

+
∫ t

0
{H(1,N)

T + H
(2,N)
T }{N−1‖XN (s ∧ τN )− X̃N (s ∧ τN )‖1

+ ‖N−1X̃N (s ∧ τN )− xN (s ∧ τN )‖1} ds.(5.7)

Taking expectations, it thus follows that

(2N)−1E‖XN (t ∧ τN )− X̃N (t ∧ τN )‖1

≤
∫ t

0
{H(1,N)

T + H
(2,N)
T }{N−1E‖XN (s ∧ τN )− X̃N (s ∧ τN )‖1

+ E‖N−1X̃N (s ∧ τN )− xN (s ∧ τN )‖1} ds.(5.8)

Now we have

E‖N−1X̃N (s ∧ τN )− xN (s ∧ τN )‖1

= E{‖N−1X̃N (s)− xN (s)‖1I[τN ≥ s]}
+ E{‖N−1X̃N (τN )− xN (τN )‖1I[τN < s]}

≤ E‖N−1X̃N (s)− xN (s)‖1 + (1 + 1/N)P[τN < s]
≤ E‖N−1X̃N (s)− xN (s)‖1 + (1 + 1/N)P[τN < T ].(5.9)
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The first term in (5.9) is bounded by 3Nγ−1GN
T (γ) by Lemma 4.4, and,

for N satisfying (5.5), the event {τN < T} lies in the exceptional set for
Theorem 4.6 with r = r0, implying that

P[τN < T ] ≤ K(3)
r0

(MN
T )m2+1N−r0 ,(5.10)

so that the second term is no larger than Nγ−1GN
T (γ) if

N > {K(3)
r0

(MN
T )m2+1}1/(r0+γ−1),

which is also true if (5.5) is satisfied. This implies that, for such N ,

E‖N−1X̃N (s ∧ τN )− xN (s ∧ τN )‖1 ≤ 4Nγ−1GN
T (γ).(5.11)

Using (5.11) in (5.8) and applying Gronwall’s inequality, the lemma
follows.

Lemma 5.2 Under Conditions (2.2)–(2.14), for any t ∈ [0, T ] and 1/2 <
γ ≤ 1, and for all N satisfying (5.5), we have

P[ sup
0≤s≤t

|N−1MN (s∧τN )| ≥ Nγ−1GN
T (γ)] ≤ g(t(H(1,N)

T +H
(2,N)
T ))N−γ/GN

T (γ),

where g(x) := 4x(1 + xex).

Proof. Since VN (·) is a counting process with continuous compensator AN ,
we have from (5.4) and (5.6) that

EM2
N (t ∧ τN ) = EAN (t ∧ τN )

≤ {H(1,N)
T + H

(2,N)
T }

∫ t

0
{E‖XN (s ∧ τN )− X̃N (s ∧ τN )‖1

+ E‖X̃N (s ∧ τN )−NxN (s ∧ τN )‖1} ds.

The first expectation is bounded using Lemma 5.1, the second from (5.11),
from which it follows that

EM2
N (t ∧ τN ) ≤ g(t(H(1,N)

T + H
(2,N)
T ))NγGN

T (γ).

The lemma now follows from the Lévy–Kolmogorov inequality.

We are finally in a position to complete the proof of Theorem 4.1. Suppose
that N satisfies (5.5). Returning to the almost sure inequality (5.7), we
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can now write

(2N)−1 sup
0≤s≤t

‖XN (s ∧ τN )− X̃N (s ∧ τN )‖1 ≤ N−1V (t ∧ τN )

≤ N−1MN (t ∧ τN )

+
∫ t

0
{H(1,N)

T + H
(2,N)
T }{N−1‖XN (s ∧ τN )− X̃N (s ∧ τN )‖1

+ ‖N−1X̃N (s ∧ τN )− xN (s ∧ τN )‖1} ds.

From Lemma 5.2, we can bound the martingale contribution uniformly on
[0, T ] by Nγ−1GN

T (γ), except on an event of probability at most

g(T (H(1,N)
T + H

(2,N)
T ))N−γ .

By Theorem 4.6, for any r > 0, we can find a constant Kr such that

sup
0≤t≤T

‖N−1X̃N (t)− x(t)‖1 ≤ Kr(MN
T )2Nγ−1 log N,

except on an event of probability O((MN
T )m2+1N−r). Hence, once again by

Gronwall’s inequality, it follows that, except on these exceptional events,

N−1 sup
0≤s≤t

‖XN (s ∧ τN )− X̃N (s ∧ τN )‖1

≤ 2Nγ−1{GN
T (γ) + T (H(1,N)

T + H
(2,N)
T )Kr(MN

T )2 log N}e2t(H
(1,N)
T +H

(2,N)
T ).

Combining this with Theorem 4.6, and since also, by (5.10),
P[τN < T ] = O((MN

T )m2+1N−r) for any r, the first part of the theorem
follows:

P[N−1 sup
0≤t≤T

‖XN (t)−NxN (t)‖1 > Kγ(T )Nγ−1 log N ] = O(N−γ).

Note that the inequalities (5.5) are satisfied for all N sufficiently large, and
that the constant Kγ(T ) and the implied constant in O(N−γ) can be
chosen uniformly in N , because, under the conditions of the theorem,
‖xN (0)− x(0)‖11 → 0 as N →∞, with the result that, for all large
enough N , GN

T (γ), GN
T (1) and MN

T can be replaced by GT (γ) + 1,
GT (1) + 1 and MT + 1 respectively, with the corresponding modifications

in H
(1,N)
T and H

(2,N)
T .

That xN can be replaced by x in the theorem without changing the order
of approximation, provided that ‖xN (0)− x(0)‖11 = O(Nγ−1), follows

directly from (3.11).
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